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ABSTRACT 

A considerable volume of recent research work has been devoted 

to the fluctuation theory of random variables and queueing theory. The 

purpose of this thesis is to study a very special class of combinatorial 

problems connected with these fields. Such problems are sometimes posed 

in the literature as generalized ballot theorems. 

In Chapter I we review some recent work in these fields, namely, 

the work of Takacs, Graham and Dwass. In Chapter II we generalize the 

ballot problem in yet another direction and obtain certain refinements 

of it using an analogue of the multinomial theorem. However, we have 

not been able to establish any connection between our work and the theorems 

of Chapter I though they appear to be somewhat similar. Chapter III 

contains a variety of results which are obtained as a by-product of our 

approach, 
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CHAPTER I 

A REVIEW OF CERTAIN COMBINATORIAL RESULTS IN 

QUEUEING THEORY AND FLUCTUATION THEORY 

§ 1,1 Introduction. 

In recent years a flood of books and research papers devoted to 

queueing theory and fluctuation theory has appeared. Thomas L. Saaty, in 

his book “Elements of queueing theory" published in 1961, lists over 900 

research papers devoted to queueing theory alone. Professor Samvel Karlin 

reviewing [Mathematical Reviews, 3704 Vol. 24 Pt.A, 1962] L. Takacs’ 

"Introduction to the theory of queues" suggests that the subject ‘fluctuation 

theory of random variables' originated in the analytic approach to certain 

problems in the theory of queues. 

In 1951, E. Sparre Andersan's elementary combinatorial approach 

{1] provided a new fundamental insight regarding many problems of fluctuation 

theory. The celebrated work of Frank Spitzer [2] in 1956 on the distribution 

of the maximum of partial sums of independently identically distributed 

random variables laid the foundation for further work on the subject. How- 

ever, not many authors have attempted to relate the work of Spitzer and 

others with queveing theory, although it is now well recognised that the 

two fields are somewhat connected. As one example of this connection, the 

busy time distribution for one server can be deduced from the work of 

Spitzer. 

The purpose of this chapter is to review some research papers 

dealing with a class of combinatorial problems that have arisen independently 
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in the two fields. We propose to give some applications of these combinatorial 

problems leaving the interested reader to refer to Takacs [43] for further 

applications, particularly to queueing theory. 

The statements as well as the proofs of the theorems we review in 

the following sections will be of an elementary nature. However, it must be 

borne in mind that these results were suggested by Spitzer's work and arose through 

certain deep probability considerations. These theorems may, in fact, be 

considered a natural consequence of Spitzer's work. 

§ 1.2 A review of some recent combinatorial results. 

In this section we will review some combinatorial results which 

were first published by Takacs in [3,4]. These results could also be 

obtained from fluctuation theory; and in section 1.4: we shall discuss more 

general results of this nature from an elementary point of view suggested 

by fluctuation theory. However, it was Takacs who first gave several 

interesting applications of these results, and in this section we restrict 

ourselves to reviewing some of the results due to him [3,4]. 

Consider the following urn problem; Let an urn contain a _ cards 

each marked O and b cards each marked pw+l . Suppose that all the a+b 

cards are drawn without replacement from the urn, We seek the probability 

that for every re=H1, 2, ..., a+b the sum of the first r numbers drawn 

is 

(1) less than r, or 

(ii) less than (r+1) . 

We may ask equivalently; what is the probability that throughout the 
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drawing, the ratio of the number of zeros to the number of (y+l)'s is 

(i) greater than w: 1 , or 

(ii) sat pleat ihe iin? 

To see the equivalence of these two problems, let us suppose that 

amongst the first r(=a+8) draws there are @ zeros and B (u+l)'s. Then 

Gos sOlae Culsue( ul) <te, -p18 

holds if and only if 

a > UB 

and similarly 

GO Bs Quad) iia) Bed 

holds if and only if 

a+1> pp 

or, if and only Lf 

a => uP 

Having proved the equivalence of the above two problems we establish two 

simple theorems which we will need in solving the urn problem, 

Theorem 1.2.1: 

Consider an urn containing n cards marked with non-negative integers 

Ke aK sali ae respectively where ky + ke ee jolene ko =k) with) O'<c kc nm. 
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Suppose that all the n cards are drawn without replacement from the urn, 

Let v.(j - 1, 2, ..., nm) denote the number on the card drawn at the Aes 
j 

draw. Then 

k 
(evo) Eva ev city for t= 12). my = do 

irrespective of the particular values of ky, kos coos ko 6 

Proof; 

Let {v,, Vor teey vi} be a permutation of {k,, ko, Biatiels k.) ; 

The random variables Vy» Yor sees Vi are exchangeable i.e. for every r 

; ; vs, eheMiot ad aeereipees 15 and l¢i,<i,< <i. gn the joint distribution of re Vis 2 v } 
(2 © 

agrees with that of {v,, aiistals v3 . It follows that every permutation Vos 

.--, k_} has the same probability of being chosen at random, 
n 

Y¥% 70%) 

5 > ae 2 

Be Wa ie 

Hence 

it E(v,) 

siz 

We use induction to show that (1.2.1) holds for every pair (n,k) where 

@) WA ki< a) 

When n=l, k=O , there is only one card marked zero so that 

P(v, < 1) = l 

and (1.2.1) holds. 
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When n=l, k=1, P(v, <1) = 0 because the only card is marked 1 

and (1.2.1) still holds. 

Hence (1.2.1) is true for (1,0) and (1,1) . Assume that it 

holds for the pairs 

(USO) Gol eoey (n-1,0), eooy (n-1,n-1). 

We shall prove that it also holds for the pair (n,k) where O<k<n. 

If k= n, (1.2.1) holds trivially. Let 

Wey i Sn DO Te j with Of 34k. 

Then 

P{v,+V¥5+ eri Ye Ome 1 Oo... n|v, +V¥o+ seek v= 5) 

= P{v, +¥,+ +02 tv <4 for r=1, 2, ..., k|v,+¥5+ wiouse cE v= 5) 

cet be 
fu. 

by the inductive hypothesis. Thus 

P{v, Vat eet UE SOE fOr, Sis ly reh. wey BY 

= 
2 

2 (1-2) P{v,tvo+ --. +¥, = Jj) 

k k 

BOL bee Sy, = = P{v,+¥,+ ahs +, =j)-7 ). jP{v, +¥5+ Res +v,=35) 

j=o j=o 

E(v, Py a 00d Vi) 
wile 

Sil 7 {E(v,) + &(v,) +... + E(v,)} 
—= 
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etelignogt (k + 4} 

Corollary: 

denote the number of zeros, ones, twos, .... re) o? eeee 

among Ky» Kes oe 0G kK so that 

OP niee le Ne Be nh le oie = ine = ex Om ke <one, 
fe) Less 2 ae as = = 

al 

Then under the asumption of Theorem 1.2.1 we have 

n+1l-k 
(GiB) P{v)+V¥5+ odo “ap Ve <r+l {for rah, 2, <<, n} = ea ; 

(n+2-k)(n+1-n, ) 
(1.2.3) P{v)+V5+ stele tas <'r42"* "for? r= 2s Ae ay (Sane 5 

(1.2.4) P{v,+ Teientver< E> fOr Eal, 2)... , nm) Yo 

(n+3-k)[(n+1-n, )(n+2-n, )-n,(n +3) ] 

5 (n_+3)(n 42)(n +1) 
° Oo ° 

etc. 

Proof; 

Let us introduce the notation 

Ps(n,k,n yn), ei; n, 4) = Pv ++ ere Ve <tr Lor rarfo,\...,n} 

for j=0, 1, 2, ....- . These probabilities will be seen to be independent 

Of n,, n j Hilo e000 and can be determined recursively from the relation 
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(n +1) 
5 _ Gives) P,_y (n+l, k, mot, nyy vee, j-2) = Taal P s(n, ky Moy Myreers ny) 

n 
+ it Psy (™ k-i, mot], ny, +, nenl, won, a eee 

iz (n+1) J 

To prove (1.2.5) we proceed as follows: 

Let us put into the urn a card marked zero so that now there are 

(n+l) cards in all of which n+l are marked zero and n, (i=1,2,...,k) 

are marked i. Then Psy (ntl, k, ny+l, ny, cosy Rj _p) is the probability 

that throughout the drawing the sum of the first r numbers drawn is less 

than r+j-l . 

(n_+1) 
If the first card drawn is marked zero, with a probability Se | 5 

then there remain (r-1) more cards to be drawn satisfying 

Vania cet Ve <r+j-l , 

the probability for which is P s(n, ky Moy Ayr sees ns 1) ; 

On the other hand, if the first card drawn is marked i 
n 

: ; ‘ at ee i ‘ (440, 1 =1, 2, ..., j-1) with a probability Gan there remain (r-1) 

more cards to be drawn out of n cards satisfying 

nae nes <r+j-i. 

The probability for this is Psy (ms kei, no+l, ny, s+, nl, oo. ny yey) : 

The events that the first card is marked 0, l, ..., j-l are mutually 

exclusive and (1.2.5) follows by the theorem of total probability. 



anh otaiy won sherk 8 Ones, boalvant 

(fet) mbemiee ore) 



eS 

In particular, j=l gives 

(n +1) 
P (atl, k) SRT P, (a, Ics n,) ° 

But P (ntl, k) ais the probability that the sum of the numbers on r_ cards 

is less than r for r=l, 2, ..., n. Thus by Theorem 1,2,1 we have 

k 
P (n+l, kk) SOS 

giving 

n+l n+l-k n+l-k 

P(a,k,n,) = (n oh % (n+1) a (na =a 
ro) ro) 

which proves (1.2.2) . 

To prove (1.2.3) we let j=2 in (1.2.5) to get 

(n_+1) 
oO 

P(n+1,k,n +1) = Ti 
n 
1 

Pi (n,k,n),n )+ Sea] P, (n,k-1,n, +1) ; 

Now replace n by (n+l) and n, by (n,+1) in (1.2.2). This yields 

n+2-k Pi(ntl,kynj41) = P,(n,k-l,n +1) = el 

so that 

Po(mykngyn,) = “ER | 1. x1) ‘oneal 
Cen Oe eal: n +2 : (n+1) : not Z 

(n+2-k)(n+1-n, ) 

Po(n, k,n, yn, ) Ts (n_+1)(n 42) 
fo) fe) 

or 

which proves (1.2.3). 
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Proceeding in a similar fashion we can obtain Ps(njkyny---ym ? 
j- 

for every j. 

Theorem 1.2.2: 

Let Vir Vos cers V be integral valued random variables and that 
n 

all the n cyclic permutations of (v,, Vox sees Vv) have the same joint 

probability distribution. Let A. denote the number of positive sums 

among V, + V5 +... +v, (r=l, 2, ..., n). Then we have 

(1.2.6) P{O =i|¥y+¥5+ rn a 1} = = CE Le ereraea:) ar 

Proof: 

Let ky ky» aie sts ke be fixed integers with 

et awe Re = Pee 

Let us first suppose that (v1, Vor cess Vv) is being chosen at random among 

the n cyclic permutations °f (k,, kos aisle’ Kk) and that each permutation 

has the same probability of being chosen. In this particular case we shall 

show that 

P{A,= ij} =1/n , Gale aa, a) 

irrespective of k,, 1} py? Kor tee KO . Hence the theorem follows for the general 

case, 

Consider n distinct numbers n(k, SP LSE Ob Me ky )-j GJS cain) 

and arrange them in an increasing order, Let hy denote the serial number 
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of n(I, + see kj )=3 . 

Define k, =k, (i=l, ..., n) . We shall show that the cyclic 

permutation Ices) Havok (I, ko, ates k) contains exactly Ce say Sin GGCDs res 

SRS positive partial sums, that is, the inequality 

Cies75) Keay + Ks 19 tooo tk > 0 @ad+la dso, fies sy Jon) 

holds for exactly (n+1-i,) subscripts. 

Tf r=jim , then (1.2.7) holds, for 

+ Ks + see. + k, = k + k + eco + KO = i > 0 r) 
Kad j+e j+n li 2 

If r=j+l, j+2, ..., j+m-1 then (1.2.7) holds if and only if 

(1.2.8) n(key OP Kiyo + cos + k) LJ (r-j) > @) 9 

that is, if 

(1.2.9) n(ke, + kp tees + ker = n(k, + ky + oe. + k,)-3 ‘ 

Now 

n(k, aes) Ky an - (i+n) n(Ie, +k,,+ se th Hey tee ety. )-(ien) 

= ul + ky tee + Ik, )-(i+n) 

= n(k, + e@oe + ik, ) C i 

j+n 2 (j21,2,:-+0,0) . Thus the 
il 

inequality 

because k, +k, +... +k.=1 and k 
2 n 

(1.2.10) n(Ie, +k,,+ ets tk )-r > n(Ie, +k,,+ orate +k, )=J (ral,2y ec. 0') 
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holds for the same number of values of r for which (1.2.8) holds with 

Peal ites weep mote BYethedefinition of ee , (2.2.10) holds’ for 

nei, different values of r . Since (n+1-i,) (j=1,2,...,n) assumes each 

of the values 1, 2, ..., n only once, we can conclude that among the n 

cyclic permutations there is exactly one which has j(j=1,2,...,n) positive 

partial sums, This proves the theorem for these fixed values (k,,k,,...,k). 

Since the result is independent of (ey ,ko,.+-,k), the theorem also holds 

in the general case, 

We are now in a position to solve the urn problem, Let the urn 

contain a+b cards, a of which are marked O and b marked (yil) . In 

the notation of Theorem 1,2.1, we have 

n= a+b, k= (y+l)b and Vy tVote eet, = a-0+(u+1) +B 
2 

where r=a+8 , a being the number of cards marked zero and £8 the number 

of cards marked w+l . Thus 

x a +l )b 
P{v, +V¥5+ oee + ee < r for Pager Hh) = 1 — foot 

a-ub 
P{O-a+(u+1)-B <a+8 for a+B = 1,2,...,n} = = 

(1.2.11) Pig ae) = fact) 

This gives a solution of the first part of the urn problem, To solve the 

second part we use the corollary to Theorem 1.2.1. In the above notation we 

have 
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P{v,+¥5+ ietVpegetenfor rely .cgm) 

= P{v tee. tv. < r+] for r=l,...,n)} stare 

= P{(O > a + (u+l) -B < a+841} 

= P{a + 1> up} 

= P{a > u8} 

at+tb+l - +L )b 

a+l 

Or, 

1-ub (1.2.12) P{a > uB) = ie 

We remark that in the next section we will interpret the urn 

problem as a generalised ballot problem and give yet another solution of 

the classical ballot problem. 

§ 1.3 Applications of Takacs theorems. 

In this section we will give some applications of the theorems of 

section 1.2. The first application we wish to consider is to the classical 

ballot problems. Ballot theorems originated in 1887 as a mathematical puzzle. 

Many students of combinatorial analysis and probability theory have looked 

into the problem from different angles and obtained a variety of results, 

For historical remarks and references to further work we refer to Feller [5] 

and Takacs [3,4]. 

Consider then the urn problem of Takacs, Let us reformulate it as 

a generalised ballot problem as follows: 
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In a ballot candidate A scores a votes and candidate B 

scores b votes, Let a>wb where wp >O is arbitrary. We seek the 

probability that throughout the counting, the number of votes registered for 

A is 

(1) always greater than wp times the number of votes registered 

for ~Be, cor 

(ii) always at least w times the number of votes registered 

for B., 

We solve the ballot problem in its most general form. For a 

fixed w>O let us denote by N(a,b) the number of ways of counting 

atb (a> ub) votes such that throughout the counting, the number of votes 

for A is always greater than wz times the number of votes registered for 

B. Let P(a,b) denote the corresponding probability. Then 

P(a,b) = N(a,b) 
b (24) 

and we have the 

Theorem 1.3.1: b (Py 
a 

- a+b C, (atb-1) a eas 

(1.3.1) P(a,b) -4 jo j 

0 if as< by 

where C =1 and the constants C,(j=1,2,...) are given by the recurrence 

relation 

: (3) 
(1.3.2) d Ci THT, wy Ob Cher lyOssy ee) 

=O 
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ee 

where [bu] is the greatest integer < by . 

Proof: 

If a< by, then in every counting the number of votes for A 

cannot always be greater than wu times the number of votes for B_ through- 

out the counting and N(a,b) = 0. Thus P(a,b) =O. 

Let a> bu. In any counting the last vote counted could either 

be for A or for B. Thus we have the relation 

(1.3.3) N(a,b) = N(a-1,b)+N(a,b-1). 

Equation (1.3.3) is a famous difference equation. A particular 

solution is 

N(a,b) = ae (j <b). 

To check this we use Pascal identity and see that 

a-1l+b-1+j Ms Gena _ fatb+j-1 
b-j b=t=§0 J 7 b-j ‘ 

The general solution of (1.3.3) is 

b 

N(a,b) = " ch aay 
ficial b-j 
j=o 

where oH are constants to be determined by the boundary conditions. 

If a>O, then N(a,0) = 1 and thus Cj=l. If a= [bu] , 

then a moment's reflection shows that 

N([{bu],b) =O. 
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Thus the coefficients oie (j=l, ..., b) may be determined recursively 

from the formula 

b-j 

b 
Vonal ‘ 

) oF ea 29) balers) 

j=0 

where C= . Since the Gane are determined recursively they are unique. 

Thus we have 

P(a,b) = JN 

Pie3b) = a+b 
l |» 

‘pls: 
to 

-— 
& 
=— 

> im Q SS it 
ws 

which completes the proof. 

In particular, if w is an integer, then we will show that Oe = =U 

(j=1,2,... )- and thes 
fe 

P(a,b) = a-pb 

which is a well known result. For b=1, we have 

1 + 

aj Cc, pa, iC 
) Jj my) 
j=0 

which yields 

Cy =U. 

Assume then that OF =<) son too) j < k. Then we have 
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ee (k+l )p+(k+1)-1-f\ _ 6 
A, k+1l- j o 

j=o 

i.e 

k ; 

a (k+1)u+(k+1)-j-1 (k+1)p4+(k+1)-1 
> (-) ( k+L= 4 oe e+] 
jal 

2 ee ee) 
- Kk+1 0) 

giving 
k 

Xe ae tke j (k+1) +k 
cial a & (k+1)-j k+1 ; y 

Now using the well known identity [cf. for example 5, p.62] 

bina - (eat yo ‘Gum _ 
i 

— 

| 

we have 

k 

oats j a (k+l)u+k\ | 1 
(k+1)-4 k+1 : 

ol] 

j= A 

Thus 

5 ‘i (k+1)u4+k+1 (k+1)u+k fi} (k+1)ptk 
cae © k+l k+l k+l 

and now using the Pascal identity and noting that 

(k+l)u+k\ = /(k+1)u+k> 
a el 
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a Niifec 

we have 

en 

which proves our assertion, 

In the general case we have 

c, = -(ul, cy =-4BHl (1-2fuletan}), ete. 

We remark in passing that we will give yet another characterization 

and solution of the ballot problem in the next chapter. Presently we wish 

to use the result of this theorem to study the fluctuation of the frequency 

of successes in a sequence of Bernoulli trials. 

Consider a sequence of Bernoulli trials with probability p of 

success and denote by es the number of successes in the first n trials. 

We wish to find out the distribution function of the random variable 

Sup ae ° 

Line 

Theorem 1.4.23 

Lf w< a then we have 

00 
“h q : ew ‘ 

(Ge) Eee < el EOD N=, ies, eiei6 \ = (1-p) ye a p? 

jo 

where Co=t and the constants C,(j=1,2,...) are given by the formula 

(5.2). 
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Proof: 

Let 

th 

Sie { 1 if the “ae trial is a success 

O if the n trial is a failure, 

Then we note that 

n a 

ee 
j=l 

Now consider the urn problem of section 1.2. Let 

1 if the me number drawn is p+l 

a(t) = 4 
OQ if the oan number drawn is O., 

Then for 1 $1, < n, uigigigh Ss nh. the joint distribution of 

Km eb) Xo (ab) iy uci, Kea, (a,b) ylef. 5, p. 109) approaches the joint 
ny n, n, 

distribution of the random variables Ren aig ounce le. | ai 2a 09) 5 
i eta Ie 

b —-0o in such a way that Pe —p . Thus for every x and every finite 

positive integer N we have 

n n 
1 1 

P max a %,(a,b) < x7 > P max = WALES OTe 
conn h i ie J i < nic N : y ; Pbk j=1 | ea ae j=1 

if a-~©,b-o and aa > p . This relation remains valid if we let 

Now we let a-© , b—o in such a way that 

(1.3.1), we have 
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b b oo 
Nal ( ) era 

lim P(a,b) = lim a5 ) ci 1 5— = (1-p) ) Cj" 

es a) fro 
b/(a+b)— p 

But (1.3.0) we validiif andjonly if alibi i.e. if and only if 

a/(a+b a l-p 

oe ae pe 

Thus), Lf. < a then we have 

00 

Yn 1 \ ve j 
pf = < em for n=1,2,...¢ = (1-p) 2. Cie : 

jo 

We do not propose to give any further applications of Theorems 

1.2.1 and 1.2.2. The interested reader is referred to [3] for some 

applications of Theorems 1,2.1 and 1.3,1 in queueing theory. 

§ 1.4 Related results in fluctuation theory. 

In section 1.2 we reviewed some combinatorial theorems established 

by Takacs, In this section we wish to review some recent results in 

fluctuation theory due to Graham [6] and Dwass [7]. These results, although 

of an elementary nature, will prove to be far more general than those of 

section 1.2, In fact, we will show that the results of section 1.2 follow 

directly from the theorems of this section, 

Let us introduce the following notation; Let (x,, Koy veey x) 

denote a sequence of real numbers and Cone om = be the eee partial 

sum, Let 
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A 
=: 

fi 

==> 

“a j= Fh “ tV o 

(9) if x $0 

@) Lf x >0 

Denote by m(x,, Koy cory x) the rth largest term of (x), Koy veey x) 

and let m(x,, Koy tees x) a0 WEorr >on) 

The properties A, B, C, below follow immediately from the 

definitions and will be used often in the sequel. 

A. 
+ 

If x<0, y<0O (and even if x #y), then x =O=y 

and if x= y then xt = y* . 

m(x,, Koy ees x) > m(x,, Koy very cay) and 

« + m(x,, “9 eoey x) = m(x,, %p9 e929 XL) - 

If ie che! v'" largest term (v <r) and ae the 

largest term of (s,, Boy sees s) then a5 = Biss 

We are now in a position to prove the following 

Lemma 1.4.1; 

Pe yo250 (then 

(1.4.1) MX) Xp eee yX ye L~ m(x 9%, gece Ne 

n icete n 

ia M(H pXoeeeeyX sy) = M(H) Xp 00+ y% 90) . 





- el - 

Proof: 

There are three different cases to be considered, 

(2) Let m(x, , x Apes SSS 2) Cel O igen pr tees Xe << 

In this case, by definition 

+ 
m(x, , Roe) + +e xy) = 0 

and m(x,, Koy ey x) S mx, Koy tees xy) by B .. -Thus m(x,, bees x) <0 

oe 
and m(x,, aneters x =O, 

Now y>O and m(x,, Res dnatet, x») <O together imply that 2? 

y is not the rth largest term but is the vth (v <r) largest term, It 

follows that if we replace y by an arbitrary non-negative real number ¢ , 

the rth largest term in (x,, vee, X_,€) still remains the same and is n 
Xo» 

<0. In particular, for ¢€ =O we have 

m(x,, aly OO x20) = m(x,, as: 49.99 xy) ‘ 

Thus (1.4.1) holds. 

(ii) Let m(x, Koy cers x vy) > 0 and m(x,, Kop sees x) =O) 

Then, by definition 

m(x,, De OO OT) es A = m(x,, %5, «eo, XY) n ly 2 n 

and 

+ 

m(x,, Koy tees x) = m(x,, Moy reey x): 
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= (20S 

A “ tk 
Also, M(x, 5 Koy sees x) > O implies that the r 2 largest term in 

(x), Xp sees x90) is the same as that in (x), Kos tees x) . Thus 

+ 
MX) pXoye0+9X 50) = M(x) yX5y0++,% ) = M(x, ,X52++)X) : 

Thus (1.4.1) again holds. 

(iii) Finally, let m(x,, Oe xy) >O and m(x,, X59 vee9%) 

<0. 

In this case our assumptions imply that 

+ 

m(X),X5y+00y% sy) = MX pXoye0 09% V) 

and 

+ 

m(X) )Xoy+0e9%,) = @) © 

Also y>O, m(x,, X. Hehe x) <0 and m(x, x 
ey Pde 

that the (r-1)th largest term in (x), Xoo very x) is now the ro largest 

wees By) > 0 imply 

term in (x,, Xpy sees xy) and that the (r-1)th largest term of 

(x,, Xone sees x) is >0O., It, therefore, follows that 

mi) popes X70) = 0 

and (1.4.1) is again satisfied. 

This completes the proof of the lemma, 

We are now in a position to prove a simple theorem from which the 

theorems of section 1.2 may be derived, Let 1¢gr<¢n and mH. denote the 

k 
<h largest term in (s), Soy sees 8.) where s, = = x, . Thus 
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ie = M(S,5859+++>5)) . 

Then we have the 

Theorem 1.4.1: 

=(m" -m ) = Sie where o ranges over all cyclic permutations 
o n-l 

of (X).X55-+-sX,) . 

Proof: 

Let us first consider the case when Oe <— ©), tnen aa = 0. by. 

definition, We shall show that m - a a = 0 for all permutations of 

Xs The proof of the theorem will then be complete for the case oe <0; 

By B, we know that the summands m - atk are non-negative, 

Bey otek: + + + 
Thus we only have to show that if m >O, m >I1O- ‘then m= m 

n n-1 n n=l 

and m -m =-0. Otherwise m =O0=m' 
n n-1 n n-1 

Now, if Sh is the rth largest term in (8) 5852+++98,) then 

m. =s and it follows that 
n n 

Tie eh Ole 
n n 

Furthermore, 

implies that 

Next suppose that s_ is the (r+k)th (k > 1) largest term in 
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=, fh oe 

(s1, Sy sees s_) » Then m =m + + 
nee and it follows that m_ = m1 (by A). 

Finally, if s_ is the yh (v<r) largest term in (s,, By eves s) 

than + i 
then m <s_ (by C) and it follows that m =O and m_, =0 (by B). 

Thus, for sy <0 we have shown that 

Sat} 
+ + + 

»: (m_ - ma =O= Ss 

o 

Next suppose that s,2 O. In this case oa e st « Note that 

(ied o)) m m(x, x, +%>5, ete Xp tk tee tk) 

x, + (0,5) Xo +Xzs recy Xytk teeetk ) : 
B 

Thus 

a + 
(m, i cD) 

ala 

ane 
: + ae 

= ys (m(x, 4X) 4X5) 000, Xl Xotee otk ) - M(H) Xp +Koy ee ey Xj tRyte eo tX 4) ) 

o 

sith 
= » (m(x, 4X1 +X py 0609 Xy th tee o +X ) = M(X pX) +X y 0004 Xy HRyteeet® 1 ,0)) 

i 

(using (1.4.1)) 

= y (m_ - MO, 2X) pXp +X oy 000g Xj tXyte et 4 )) 

o 
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= : (x, + (0, XX tXay ve ey RAK ste +X ) 

o 

= M(O,X4,X,+Xoy ee yXytRyteoet® 1 )) (by (1.4.2)) 

= (x, A M(O, Xo, eee yXotkgtes 4%) - MO, Xp, 0+ 4X 4X tee 4% 1 )) 

+ (x, + MO, Key oe ey Ke tKy tee 6 HK HG) - (0, X55 +++yXot...4% )) 

+ e e e e e 

+ (x, + MO, Ke pre eeMs pte e tM ty tee te) 7) 

-M(O,X sper ey Keto eo AK Hy Hee 4H) 

This completes the proof, 

We now prove a more general theorem, There are some misprints in 

Graham's paper and the theorem as stated below therefore differs somewhat 

from Theorem 2 in Graham's paper, 

Let (x), Koy sees ace be a sequence of real numbers and let 

™; Ck) = mq Mer gory te Sg) 

LOC Ona kecatemeand, Wea ji< uy |. 
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Theorem 1,4.2: 

n 
The hs nw Lo teen iandsy> 6x Oe fox li akaet 

then 

t t 

(U5) BE fe) - mW") = a(t) -m)+) x,. 

Proof: 

The proof of this theorem is not very much different from that 

of Theorem 1,4,1, As before, we note that 

(1.4.4) m, (I) = mT Mead ego? Meg tee Meg) 

+ m(O,x piekenetaae =) ° 42? ° °°? 40 +j 

Thus 

t 

» (m (k)* - m4 (I)*) 
n 

mn rear 

|e 
+ 

= (m(x, 4) el ka? eee my Ayte ee +5) 

x u pa 

+ 

? MK 7 eg oe te hy) ) 

|e 

r, C1 Mgt 40? °° Beg Ph ean) 
ay {l 

- Xp Mea yor rR eyz tees tH 7 90)) (using (15 1)) 

Cm (k)-m(0 ya euros ere Meg tere tR oy) 
fe is 
va il = 





= 27 « 

t a 

ys (xp porter X pote otAK )-MOyH pr eeer Katee ehh 1) 
k=l 

(by (1.4.4)) 

t t 

> ye HH, gary) a uO Foret ott Mean) 
k=1 k=1 

= MOK rere pter ety) 

ae 

i de x HOe, 7 HO, os ees he yor nega “Xe an) 

7 (x, +m(0,x,, eo egXate e +x)) 

t is 

= ) HOCK, Xa tego eX ea tee Phe ag) mle 0X] ng oe oy Ky tee HK, ) 

t 

z hs x, +m (t) - m(0) 

which proves the assertion. 

n 
Note that the assumption .> az eat 20, 1<k<t _ has been used implicitly 

in the proof wherever we have used equation (1.4.1). 

Corollarys 

In equation (1.4.3) let t =n and jp 7% for sign. First 

we note that this assumption gives us all the n cyclic permutations of 

(x), Xor sees x) on the left hand side of equation (1.4.3). For instance, 

k =i gives aie Xs an) which is the permutation 
(x5 OU aa 1 an? 

(x, 0 eoey «3 x coos x, ) of (x,, eoey x) . Thus we can write 
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n 

Dy (m_(1)* - mo (k)) 

k=1 o 

Il > s+ 1 34 = 

V 
n n 

Next we note that the assumption ©, x, .>0O is the same as % x,>0, 
j=l k+j - sean dna 

Leex sy >0O. Finally, we note that 

m(n) = m(x 1, ev0ey X rp OG + Xp) 
n+ n 

m(x,, vecy Xp tiene + x) 

m_(0) ; 

Hence equation (1.4.3) reduces to 

(m* ie ae 

n nel 

oe 

i} 

iP] 3 

ba 
Cite 

i} (O) 
+= J 

ul an 
Ss + 

which is what Theorem 1.4.1 asserts. 

The next theorem is yet another generalisation of Theorem 1.4.1, 

The proof is exactly similar and we will omit it. 

Theorem 1,4,3: 

Let (x), Koy sees x) be a sequence of real numbers and let 

l1<gmgn. Suppose that the sum of any m consecutive x, is non-negative 
j 

where the x, are considered cyclic, i.e. x, follows x,» etc. Then 
j 

for m-l<q<p<n we have 

1 

GE. 475 ) ), (n> bin’ Yo. I(p-q)wantal, 



oy 6. ib vy reulia 

: fy 



We remark in passing that if we let p =n and qe=n-l in 

Theorem 1.4.3 we obtain Theorem 1.4.1. 

We now derive Theorems 1.2.1 and 1.2.2 from Theorem 1.4.1. Let us 

suppose that (x), Koy sees x) is a sequence of integer-valued cyclic 

random variable such that 

Xx Xx Bis Dietz tint [ey 
1 + 2 w v n 

Then Theorem 1.2.2 asserts that for any integer r , with l1<rc<n we 

have 

1 
P{A, = r|x, eet = 1} = = 

where A is the number of positive partial sums amongst S17 Sox oeey 8, 

Now, under these conditions Theorem 1.4,1 asserts that 

S(m’-m'.) =s =1., We know that each summand (m* - m* ,) is a non- 
Caan n-l n n n-l 

negative integer, It therefore follows that there must be exactly one cyclic 

° : oF + ; permutation of (x), Koy ees x) for which (m_ - m1) S204 this 

inequality holds if and only if there are exactly r of the positive partial 

sums s, which are > 8. = 1. Thus there must be exactly r _ positive 
j 

partial sums 1<r<n. This is what Theorem 1.2.2 asserts, 

To derive Theorem 1.2.1 we interpret it as follows; If 

(x,, Kor sees x,) is a sequence of non-negative integers with 

x, +X + ooo + x= k <n then there are exactly n-k cyclic permutations 

of Kye Kos soos KX such that the ae partial sum is less than j for 

jean, a oes n. 

Let us replace x, by (1 - race? 
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we obtain the sequence of integers (1 - Bea Re aly) sueiaty eli x, ) in 

which 1 = oat g1 for all j. Note that there is a one to one correspondence 

between the cyclic permutations of (1 - x? ul oat a2 ie) ejgh nim x) and 

n 
of (x), Koy tery x) » Now a (1 - x5) =n-k>O so that we can apply 

Theorem 1.4.1. Let =f), that.is ,, det ) m(1.- x 1 = x miedongatiley mib3e 
n-l? 1) 

be the largest of the terms in (1 - Ky oseey 1 - x,)- Then Theorem 1.4.1 

asserts that 

where o ranges over all the cyclic permutations of (1 - Kise sees 1 - x, ) 

+ + and hence of (x), Kop sees x) . We note that m_ and m,, are non- 

negative integers and nom. > 0 ‘ 
n n-l = 

Now observe that the last term in any permutation is O or 1 or 

a negative integer, If the last term in any permutation is O or a negative 

integer then it follows that m = my . Lf the last termis 1 then 

either Ss is the largest term or not. If sy is the largest term, then 

m =m can at most be 1 (it may be zero) because at least s = 
n nel n-l 

Noewk =I SLt oe is not the largest term then m = m” 1° Hence we see 

that m - m 1 can at most be 1. Thus there must be exactly (n-k) 

cyclic permutations in which m. - m” 1 is equal to 1. In these (n-k) 

cyclic permutations Ce ee k is the largest partial sum and it follows 

that 
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i.e. 

(1 - cage LSS tok erent “Xi fy ewsonels 

or 

DA ya foe + x) < nek 

or 

n 
j- Be 84 Regn e%y) < nek 

or 

j- k+ (x, +... 3s) < n-k 

or 

IS) SP ey Ae OCC Se Xj < n-j for ss) = sly Crete. apena lcs 

Noting that xy siotenegen ests So a k <n _ we have 

Xp + Xp tees + Be <a LOT Sj UG ig verevers) Tl te 

Hence there are exactly (n-k) cyclic permutations of (x), Xoo ees x) 

such that 

ice ak ate velfejen ctres 1 2 Je “eke for j = 1, eoey Tg 

Finally, we prove a theorem due to Meyer Dwass for cyclic sets of 

random variables, We shall call X,, X,, ..., X. a cyclic set of random 
Tey Zan 

variables if P(X, Sty, ery XS t) is constant for all n cyclic 1? 

permutations of the sequence (t,, toy sees t_) . Loosely speaking, the 
n 

random variables are cyclic if their distribution law is invariant under 

cyclic permutations. Similarly, the set is called exchangeable (or symmetrically 





+ Se) = 

dependent) if their distribution law is invariant under all permutations. 

It may be noted that exchangeable sets of random variables are cyclic, but 

the converse is not true, Let Xs Xo» elelels x be a cyclic set of random 

variables and let m(X,, Xyy sees x) denote the maximum of (X,, Koy sees Xx) 

For simplicity let 

S, = 4) + Xe t+ oe +X, 

and 

vie M = m(S,, Sy see, So 

Then we have the 

Theorem 1,4,4: 

(1.4.6) E(M/S_ = S) = s0/m . 

Proof: 

We first remark that when S = s >0 either side of (1.4.6) 

vanishes. 

Let us therefore assume that s <0. We first give a numerical 

example to motivate the proof. Suppose that (X,, Koy very Xe) is equally 

1 Ly 
likely to be any of the six permutations of (- 2) - - 3 1, - To 2 -l, 2, 

Table I lists all possible values of the relevant variables, 
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Table I 

Ree 8 fe Ke X, Sig Se, Sap Sud 85. 84 s, M 

1 PS ee) at ee oe EEE a CY IIR ee ae Sa SS ana ani 
h 5 2 12 Wy Ope) Glo) He aeons in 

ait =! 2 wt 1 Le aa 6 10 pes wit cea piel ue 
3 leah 3 3 6 6 Aes 6 

i pe pele os Hermie | cilia OL 4 1D 
eee ite NiCr ge ee ea | io. a, © 

i plane Dg Peay a PAL Bie me tebe are? 
eo i ase eS ee 8S 2 

i BL Dien aie Bl els ee er eel MEL 
re BSS OR "3 oh : 2 Os eS Fs : 

Jo gD ee op! ine De Bpbi f I! Dict De Tel 3D 
UAC al Ts Mad a ea 6 Gr kes” 

ee eo i ny ee EN mo eo, eon AON Ou le 
eae E . 2 DB TS) 1G 6 6 3 5 12 

First observe that 

TE(M) = [(-f) + (-2) 404040404(-F5)] = -3 = 8, 

as asserted, Now note that in the first permutation M is achieved in the 

first (Ic, ) position. The value of M in the following permutations up to 

but excluding the second (kj +1) is zero. In the second (Ic, +1) permutation 

M is achieved in the fifth (1c,,) position, and the value of M in the 

following permutations upto but excluding the seventh (Ic, +Kc,,+1) Lise Olin 

In the seventh (Ic, +k, +1) permutation, M is achieved in the first (k,=1) 

position, Since ky + Ke + Ks = 7 =n we stop the process, We thus have 
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QW) = -§-2- G5 

(- p) + (« t -l+2- + eT) rs ts " 

= 9 7 

Note that each xX, occurs exactly once in some negative M , 

Now we prove the theorem formally. We first note that it is 

sufficient to prove the theorem assuming all the mass to be concentrated 

on the n cyclic permutations of a given set of numbers, Kye Xo coos K 

(as in the above example) . Denote the cyclically permuted sequence 

Kp sees X 4, bY T(k) and the maximum of partial sums in T(k) by m(k). 

The proof consists in showing that each x, occurs exactly once in some 
i 

negative m(k). 

We first prove that since sy <0, m(k) must be negative for 

some k . To see this let us assume that m(k) 2 QO for some k., If no 

such k exists then there is nothing to prove. Thus, setting ee 

Li, k+jrn, 

Be ee een +e 

for some positive integer j< nel (note that for j = n-1 , this inequality 

does not hold, for then ca <0). It therefore follows that 

Rat te sole ot a + Medd eer te <0 

with 

[xj twee + ea | <[Rp bee Hy + Kegan tree + %y 
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Now consider the permutation T(k + j +1), 

x Set j41? eeey ae 1? eeey mia Bs aie eoeey ej ° 

In this sequence, the subsequence x has the maximum non- 
Lee ase te ceej 

negative sum and also a <0. <A moment's reflection shows that 

m(k + j +1)< 0. This proves our assertion, 

Thus there is no loss of generality in assuming that m(1) <0. 

This implies that s,. < 0 for k=1, 2, ... n. The rest of the proof 

consists of the following steps: 

a) For any k, the partial sums of T(k+1) are 

Mead? eal + 42? ooeg eal “ti reneken ct ae 

or 

(Gia) Eyenil pay o0eg enol! ornate a) Solio e 

Since s_ and s)(k = 1, ..-, n) are both negative, it follows 

CHACIER yas) Se = 6) 5S . (j= 1 a... &). This implies that >m(k+1) 

is achieved for the last time by one of the (n-k) terms, Sut 7 Sye tee 

b) Let k, be the position where m(1) is last achieved. Then 

2 S. for, wks iy and ky > Si, fon ik ky - Now Sie = si. for 

I” s, > 0 and thus by (a) 

above m(k, +1) <0,.. .Further, Ss). > Sy. for 1k < ky implies that 
1 

k > k, implies that s 1 > 0, «eo, 8 

DOR es. 5 Cru La >0O and thus m(k) >Ofor 2<k<k 

1 1 1 
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For k = 1, by assumption m(1) <0. 

ec) Let k, be the position in T(k, +1) where m(Kk, +1) is 

last achieved, From (a), k, < n-k 2 Applying the same arguments as in 1° 

(b) , we have that 

m(k nt )p< ©, anditim(k)f>.0, 2£,, a < dex k its if po: 

d) The above procedure is continued for a finite number of 

steps until ky + ke, Ho eveue) te ke =panlene 

e) Finally we have 

| fA m(Kk, ) = 

m(k,, ) = | w a 1) 

m(k_) = s 
bg kj tk, 

- Ss 9 

tee eth, ky tkotee eth oy 

and so 

nE(M) = m(k,) +... +m(k)=s = 8), 

which completes the proof. 

Next we study an interesting special case of (1.4.6) when the 

X, assign all their mass to <-1l, O, 1, 2, oe. » Theorem 1.2.1 will 

follow as a special case of this, Under the condition that sos us OF; 
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and M<O , we must have that M= -1. In this special case (1.4.6) states 

that 

u (1.4.8) P(M<0|S =u) =-— . 

WES 2S ER Podian Me be cyclic random variables and let each Y, 
1 ee 

assien all itsamass to 0, 1, 2,°... . then Y,-1, vesy Y--1 are also 

cyclic random variables and assign all their mass to -l, 0, 1, 2, ... . 

n 
Rete ee er in, | then (Yo a1) = ren <0, Let UM “be 

i 2 n = pot i 

the maximum term of (y,-1, Y cl + Yocl, S00 Y,-1 + coe + yo!) and let 

M<0O. Then applying (1.4.8) we get 

PAM OY at Yet ne cl = ren) = ——. 
2 

Now M< O implies that all partial sums of the sequence (y,-1, 

Yorl, sees Yah) are negative, i.e. 

YyrL + oe. + ¥,-1 <0 for kai eeoog NM y 

Yip teen t¥< k fork, =P) eo 

Hence we have 

19 
(1.4.9) P(Y, tooo t+¥, Sk, k=l, ..., n|¥, ties ch Ye =n) dae 

which is @le1)y. 

This concludes our discussion of some combinatorial problems 

arising in queueing theory and fluctuation theory. Some of the results 
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obtained in this chapter, particularly the ballot theorem, will be rederived 

in the next chapter using an entirely different approach, However, no 

reference will be made to the theorems of this chapter in the rest of this 

thesis. 
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CHAPTER II 

AN ANALOGUE OF THE MULTINOMIAL THEOREM, 

§ 2.1 Introduction 

In Chapter I we saw that the urn problem of Takacs can be 

reformulated as a generalised ballot problem, We also showed that Takac:' 

results of section 1.2 can be derived from the elegant theorems of Graham 

and Dwass, In this chapter we will mainly concern ourselves with a theorem 

proved by Narayana in [8] which suggests a unified approach to ballot theorems 

as well as several other problems concerning lattice paths, 

We motivate our analogue of the multinomial theorem by an informal 

discussion of multinomial coefficients in section 2.2, More precisely, we 

define the multinomial Roneeieteues in terms of a recursive relation. In 

the rest of this section we discuss some basic results pertaining to the 

analogue while in the next section we interpret ballot theorems in the light 

of this discussion, Sections 2.4 and 2.5 extend the results in [8] to yield 

a refinement of ballot problems in a different direction than [3,4], In 

section 2,6 we obtain solutions of some other related combinatorial problems 

as a by-product of our approach, 

Finally, we remark that we have carefully looked into the possibility 

of deriving the results of this chapter from those of Chapter I (or vice 

versa) but we have not been able to do so, 
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§ 2.2 An analogue of the multinomial theorem and some preliminaries 

Let n, x, (i = 1, 2, ..-, k) be non-negative integers. Then 

n 
the expression (a, ne CS a OOO Ge a) can be expressed by the multinomial 

theorem in the form 

n n n 
oot —) n i ah 

(2.2.1) » } eevee ¥ ( ) a, ° 

fi, aN Oo ie it 
lee fone = 

The properties of the multinomial coefficients a are well 
‘ Xp aXog eee yk, 

known and we do not intend to discuss them here. However, we wish to 
k 

n @) 
emphasize that =/0 ff x n and ia bees 
e Ce we) qey 1 g Goo 

Now consider the function defined recursively, for n>I1, as 

follows: 

(G3OMOe ~.., 0)" =) 1 

(0 if Ix, fn , 

(2.2.2) (15%, p 000%, )* = 

-1; = ¥ i E (n 15 Xy p00 0% 19%, LyX; oer sy) , otherwise. 
j= 

Then it is easily verified that 

e * — n 

et), Caer 29.) (ee) , 

so that (2.2.2) can be considered a recursive definition of the multinomial 

coefficients. 
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It is then legitimate to ask; Do there exist any analogous 

functions, non-vanishing for i x 7#n , defined recursively which have 

interesting combinatorial interpretations? As one example, we define 

below such a function which will prove to have interesting applications, 

In what follows n, x,, y, (i = 1, 2, ..., k) are non-negative 

integers. For n> 1, consider the function (n; Xs Kos cory x) 

defined recursively as follows: 

(OA On Osta papper 

n 

le) if : x, Si 

i=1 (2.2.4) (15%) 4% 59-6 + 9%, )= x x 

eovoe : (n-159, 5%» ee 91) ’ otherwise ° 

aime. he) 

Then (n; Xp» Xoo vers x) , defined in (2.2.)),is explicitly given by the 

following 

Theorem 2.2.1: 

When 
eM 

bal V 3 
7) 

wiile for 2 x, <n, 
ob ea eS 

i faa Rit x 
(2.2.5) (ie gee eC es ar I ¢ 4 :) E n+l 
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Proof: 

The first statement (when x, >n) is trivially true by 
i 

definition (2.2.4), and (2.2.5) constitutes the theorem. A detailed proof 

of this theorem is contained in [8] where some properties of (n; Kyo ¥os oor %.) 
(<s is 

are also discussed. We give below an equivalent proof using the principle 

of induction, 

For n=0, either side of (2.2.5) equals 1 and for n=1, a 

simple calculation shows that either side of (2.2.5) again equals 1. Thus 

(2.2.5) holds for n=0, 1. Suppose that (2.2.5) holds for n =m (m>1) 

and > x; < m_, we will prove that it holds for n= m+l and 2 XS m+1 , 

By (2.2.4) 

(m+15%),%5ye00y%) = o). ». (mY 902 29¥,) 9 oe 2a < (m+1) . 

Jp =° 

Since ri x, < m+l , we have fi yy <m+l unless Vy = Xp. Yo = Noo creo = Xy 

and x, +X, +... +%, = m+]. This is a single term and, by (2.2.4) has 

value O . Hence we can suppose that 2% Ys <m , in which case we can apply 
il 

(2.2.5) to yield 

ma ie fi [ 

. i eT ee, ae 

(452% 0 044%) =) wl iu Tes 1) 1h a 7 ‘ 

ae 1-0 

Taking the factor C 4 DS) inside the square brackets and 

1 
breaking the right hand side into two finite sums we obtain 
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a x 

(m lex. ox P + ay i Bie an 

se thi Ui cans ~ i {22 yas) 

Yor" “ae 

x x, 

is re: i=0 Ge oy Cy é 

: _k kc 1 iby y LAS. -ews")- Cex]. 

We have used the well-known identity 

d(C DCE) 

[cf. 5, pp.62] to obtain the last step, Since this identity will be used 

quite frequently in the sequel we will refer to it as I . Thus, 

k 
ee ‘ Say 

(gins yee mx, +1 NG ee il my Wats ee ual 
9 asi By SG OMe e = xy eee it Yi m+-L m-+-2 

Yow Vpeee 

Repeating for i= 2, 3, ..., k we obtain, with & xy < m+ , 
i 

Pa 
2) e 

k 
m+x, +1 tiny agree) = Th (Oma) [a i=l i 

This completes the proof. 
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It is now clear that (n; Xs Koy veey x.) does not vanish 

Proceeding similarly to (2.2.5), we can establish, for = x <i 

: 
k 

1 k [ x x x. ; _ (n+x, +1 n+x Rite. eons (2k226) % (N35 Xoo +009) = xt I ( ec) Ve n+2 n+l . 1 i=2 af = 

We wish to emphasize that summations of the type occurring in the left-hand 

side of (2.2.6) are basic to our later development. Such summations will 

be repeatedly used in the sequel. We shall therefore find it convenient 

to utilize a simple notation for them. Generally, let S* be the subset 

(i,, ing sees i] of the integers [1, 2, ..., k] where 1< i, < ip <...<i. <k, 

and let S be the complementary set, 

Fors Xs <n, we denote the sum 
i 

x x 
1 r 

>» stave y (n; KpreeerVe peeea Vy peoes%) 
1 r 

1 r 

simply by (n; Xpr sees ge xt Rrerereis x,) where the asterisks are 

rt rE 
placed only on those x's whose subscripts belong to S* , If 1 oe is s* 

j 

and = x, = 8s , we can establish similarly to (2.2.5) the general identity. 
jeS jj 

te as 

r M+x, +1 
% x i n+xX, s* s 

(2 .27) (n; x eee x oee x d eee d ) = ( i j } ( i) E a ait *, ie i I x, ne” nel 
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Following this notation we can write 

% _* : 
(n-1;x75%55- % - (n5x,,+++5%,) for =x, < n-l 

x 
1 

x oan 

(15%) 9 Xar 0+ 09%) = y (N53 ¥ 4 Xoo e009 %) 

y,=0 

Finally, we remark that we will later extend our definitions 

of the left-hand side of (2.2.7) to cover cases in which & x, = n+l. 
i 

§ 2.3 Some interpretations 

In this section we prove a preliminary lemma which establishes 

the connection between (n3x,,++-,%,) and a certain set of vectors to be 

defined below. Before doing so we wish to characterize a lattice path 

from (0, 0) to (m, n) (m> nk) as a vector of non-negative integers. 

It is well known [cf. for example 5, p.66] that the ballot 

theorem is equivalent to proving that the number of lattice paths from 

(0, 0) to (m, n) (m> nk) , which do not touch the line x = ky except 

ae (©, 0) is aa Ge . For simplicity, in what follows, when we 

refer to "path" we always mean a lattice path from (0, 0) to (m, n) 

which does not touch the line x = ky except at (0, 0) . 

Let us first confine ourselves to points (nk+l, n), n>2. 

We note that every path from (0, 0) to (nk+l, n) must have passed 

through (nk+1, n-1) (since for n> 2 it is impossible for a path to 

reach (nk,n) violating our definition of path); in particular, the number 
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of paths to (nk+l, n) and (nk+l, n-1) is the same, 

For notational simplicity, we study paths to points (nk+l, n-1) 

for n > 2 or equivalently to points Pa = (nk+k+1, n) for n > 1. With 

any path from (0, 0) to P we associate the "path vector" (a) 5855+6+,a) 

where ay represents the distance measured parallel to the x-axis, of the 

path from the point (nk+k+l,n-i), We remark that various other character- 

izations of "path vector" are possible. For instance, we could take a, 

to represent the distance measured parallel to the y-axis, of the path from 

the point (i,0) . We will however use the first characterization because 

it is sufficient for our purpose. 

Consider now the set A of vectors of non-negative integers 
n,k 

A= (a, Any sees a.) whose elements satisfy 

O< a STi el en a ie 
= le«= = n 

(25500) 
Os On S ki darli, ais eoey Nh ry 

We assert that to every vector A, in A, corresponds a path from (oO; ©) 
BJ 

to Pa and conversely. To see this, consider the "triangle" A bounded 

by 

O< ky<x<nk+k +1 

and let P(n) denote a path from O(0, 0): to P (nk +k +1,n). of the 

form 
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where 

Bs i | 
| el 

“ S 5 
“ 

(nk +k +1 - ay) n-j), j= 

and 

») il nw + (0, ies j il — ~ ho ~ 3 

A moment's reflection now shows that P(n) lies inside A and to every 

path of the type P(n) corresponds a unique path vector ea Any sees a.) 

satisfying (2.3.1) and conversely, to every path vector in Ade 
> 

a path from (0,0) to Pi: 

We remark that a binary relation of "domination" D may be 

defined on the set of all lattice paths to Pa . If a, b are two paths 

to Po then we say that a dominates b (written aDb) if no part of b 

lies between a and the line x= ky. D is a partial order that can 

be extended to the set ate and the one to one correspondence between 

vectors in AL and paths to ae shows that the set of all lattice 
k 9 

paths to Pa and A. are isomorphic partially ordered sets. Due to 
sik 

this isomorphism we are able to consider only vectors wherever convenient. 

This approach was initiated by Narayana in [9] and was used by him and 

Mohanti in [10] to yield a unified approach to many problems, 

Next we introduce the subset [n; Xps sees x] of annie such 

that every vector in [n; Xyps cees x] has exactly x, of its positive 
i 

elements congruent to i(mod k) , i-=1, 2, ..., k , respectively. 

Dibustratton: For. ni= 3, k= 2 . the set A consists of 
3,2 

the following vectors: 

corresponds 
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000, O01, 002, 003, O04, 005, 006, O11, 012, 013, OK, 015, 

016, 022, 023, O24, 025, 026, 033, O34, 035, 036, O44, O45, 

ONG, THUREITONELISpHTT) ela5emIIG, 122, 125, 12%, 125, 126, 

133, 134, 135, 136, lyk, 145, 146, 222, 223, 22h, 225, 226, 

255, 25, 255, 250, etl, 245, 2b6. 

The vector (122) ¢A belongs to the subset [3; 1, 2] . It has three 
32 

positive elements, and exactly one of these elements is = 1 (mod 2) while 

exactly two are = 2 (mod 2). The remaining elements of [3;1,2] are 

daly eG Wl G22, 225.) 25h, 1250, 245), 

We are now in a position to prove the 

Lemma 2.3.1: 

The number of vectors in [n5x,, oO os x] is (n; Kypy sees x) 

where (n; Kyo ees x,) is given by equation (2.2.5) for n> 1 

Proof; 

A detailed, though slightly different, proof of this lemma is 

contained in [8]. We give below a shorter proof followed by an illustration. 

For n= 1, the lemma is easily verified. For n> 1 associate 

with each vector A, in [n; Xo Xoo vers x] the vector of (n-1) 

elements P(A) obtained as follows: 

(i) P replaces every element a.<k of A, by zero. 

(As a,<k by (2.5.1), the first element is always 

replaced by zero.) 
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(11) Replace every element > kof A, by'a,-k. at i 

(iii) Suppress the first zero element in A, leaving a 

vector of (n-1) elements. 

We assert that P is a one-one mapping from [15% Xoy0e 09% (n > 2) 
1c 

onto 

| ov 

\ = he 7) gider hon [m-l3 yyye05¥%,]  - 
Vane hae 

A moment's reflection shows that P maps ([n; XyprXooeere%] into X%. We 

now show that P is one to one, 

Consider the vectors in the set [n; Xs Xos very x partitioned 

into two parts 

(i) the first part consisting of elements (a, Ang very a.) 

where a. <k , and 

where a Saks ij he a ove a (ii) the last part 441? Arye » a, a 

We remark first that the last part may be empty in which case all 

the elements are replaced by zero elements by P and the vector is mapped 

into (0, 0,142.40) # suet A,» B, be distinct vectors in [n; x,, ..., x]. 

n=1 

Then Avs BA may differ in one of the following ways. 

(1) Aw Bo may have different number of elements < k in which 

case P(A), P(B ) will have different number of zero elements and P(A) 7# P(B). 
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(2) A> B, may have the same number of elements <k but 

differ in the last part. In this case, since P subtracts k from all 

elements > k, P(A.) and P(B) must be different. 

(3) A» B| may have the same number of elements <k but do 

not differ in the llast part i.e. A> BY differ in the first part since 

they were assumed distinct, In this case, since Ai: BY belong to 

[n; KpreeerX] » a little consideration shows that it cannot happen that 

Ay? BA differ in the first part but not in the last, Hence this case 

cannot occur, 

Clearly our cases (a),(b),(c) cover all possibilities for A 

BA Thus we have seen that whenever Aw BY are distinct elements of 

[n; Xp 2X590009%] P P(A_) ; P(B ) are also distinct, Hence P isa 

one-one into mapping. 

A little consideration now shows that P is in fact one-one 

onto, The inverse mapping of P is easily constructed, Indeed, the 

mapping Q defined below is the desired inverse, For n>2 _, assoce- 

iate with each vector oo-1 in & the vector of n elements Q(o Ee) 

obtained as follows: 

(i) Add a zero first element to on leaving a vector of 
-1 

n elements, 

(ii) Add k to every non-zero element, 

(iii) If there are (j+1) zero elements in the vector of n 

elements obtained in (i) and (ii) choose 
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a =a,= ., ° ‘ . = a — k 

Ls j-(x,"y)) 42 

Mle) gy l(a ee ay-y, et 17k wK Ty LOKAL kot 

etc, i.e. replace the last X.Y, 2ze¥o elements by k , the 

RE wSk - b k-1 and so on, 
NGS SPSS i aes ies Be , 

It is easily verified that Q is a one-one mapping from ££ into 

[n; Xys Xoo cess x] . This concludes the proof of the lemma, 

Illustration: Consider the subset [3; 1,1,1] of A, 3° It has 
3 

the following elements 

Leg, leon teoe e556, 156. 159, 168) 254, 257, 246, 

249, 267, 345, 348, 357 

Table II shows the results of applying P to the elements of [3; 1,1,1] . 

The headings (i), (ii), (iii) refer to the corresponding operations 

defined on page 48 in describing P. 

Table ITI 

A, (i) Gia) (iia) P(A;) belongs to 

123 000 000 00 [2;0,0,0] 

126 006 003 03 [2;0,0,1] 

129 009 006 06 [2:6,0, 1] 

135 005 002 02 [2;0,1,0] 

138 008 005 05 L2ROREO} 

156 056 023 23 [2;0,1,1] 

159 059 026 26 [2;0,1,1] 
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bs (i) 

168 068 

23h 004 

237 007 

2h6 O46 

2h9 O49 

267 067 

345 O45 

348 ok8 

SBYIl 057 

Similarly the result of applying Q 

(ii) 

055 

001 

004 

013 

016 

034 

012 

015 

02 

VI 
+ Vv 

(iii) 

55 

O1 

Oh 

13 

16 

3h 

12 

15 

a4 

contained in Table III, where the headings 

definition of Q. 

The table may easily be completed, 

Table III 

(i) (ii) 

000 000 

004 007 

013 O46 

023 056 

the inverse mapping of P as asserted, 

P(A;) belongs to 

[2;0,1,1] 

[2;1,0,0] 

[2;1,0,0] 

(gly Oinly 

(23 lO, 1) 

(231,50,.1) 

(251510) 

fi2i2), 1.01] 

teat O} 

(i), (44), (444) 

(iii) 

123 

25K 

246 

156 

Thus we see that 

to some elements of xX are 

refer to the 

Q is indeed 
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§ 2.4 A refinement of the ballot theorem, 

In this section we refine the ballot theorem using the analogue 

of the multinomial theorem discussed in section 2.2. More precisely, we 

will prove our main theorem which yields the ballot theorem as a special 

case, 

We shall refine the ballot theorem for all integral k > 2 using 

the lattice path interpretation of section 2,3. Our refinement of the ballot 

theorem does not apply for the case k= 1 as will be evident from our 

arguments. More precisely when k = 1 , our methods will yield the ballot 

theorem itself, but no true refinements of it. 

Lemma 2.3.1 generalises the ballot theorem for all points (m,, nm), 

where n>2 and m= 1 (mod k) , m>kn. The proof of our main theorem 

will now be completed, apart from the obvious case of points (m,1), (m,0), 

by using a rather similar argument for the cases m= j (mod k) , j = 2,3,...,k. 

For simplicity we prove the theorem for k = 3. The proof for any integral 

k > 3 is analogous. 

Consider the positive elements (a, eielens a.) of a path vector to 

(m,n) . If exactly 1» Xp Xs of these positive elements are =i(mod 3), 

i=1, 2, 3 respectively, we say that the path belongs to ([m,n; X49 X53] 

Clearly x, +X, +x,=n-j+i<¢n, and x 
1 2 3 

integers, Let (m,n; 

y? *o» ty 

denote the number of vectors (paths) in 

are non-negative 

aj eidiaigiy Be) 1 2 5) 

[m,n; X1» Xo» x] . Then we state our main theorem as 
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Theorem 2.4.1: 

If x, +X + aS son ; then 

(n; Xi» Xs x5) PE im = 3n 44 

% 
(2.4.1) (m,nj x} ,X5,%3) =12)(n; Koy Xzy x7) if m= 3n+5 

x * (_ (a; Kaa Xs x) if m= 3n +6 

(2.4,1') (3n+2,n5 x) ,%5,%5) rf (n-15x,,%,(x,-1)") 

(2.4.1") (3n+3,n; x, x5, Xz) = (n-15%,5%,(xp-1)") cu? (n-1}%,, (x,-1)*,x5) : 

For all other points with m> 3n the result may be obtained as a 

special case of (2.4.1), (2.4.1') or (2.4.1"). (A more compact statement 

of this theorem is given in (2.5.4). Note, however, that the asterisks in 

(2.4.1) appear in a cyclic order in these equations, We will give an 

interesting application of it in section 2.6.) 

Proof; 

Lemma 2,3,1 proves the theorem for the points (4n+4,n). 

To prove the theorem for m= 3n+5 , we note that every path to 

(3n+5,n) with exactly n positive elements in its path vector must intersect 

the line x = 3n+4 horizontally at some point (3n+4,r) where r gn. Now 

all paths in [3n+5,x, +X, + X 
2 3 

P= (3n+4,n) and their last steps must be horizontal and of unit length, 

= 13 Xys Xp» x] must pass through 
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namely, the line joining Py and (3n+5,n) . Also all paths to PF have 

been classified into sets [Sn+h,n3y4> Ye ¥5] with Jee oy eS 
5) 

Hence every path in [3n+,n; Yy> Yoo v5! when viewed as a path to (%4n+5,n) 

by joining ae to the point (3n+5,n) will belong to the class 

[3n+5,n; V5 + (n-Zy,), 56 ye! . Thus, in order that a path to P when 

extended one unit horizontally to (%n+5,n) belong to the class 

[3n+5,n = xX, +X +x 3 Xp» Xp x5] it is necessary and sufficient that 
5) 2 

= = 2 d a yy = aie See = an V5 + (n : sey) x, 

Here (n-Zy,) = x NY, is non-negative, since it represents the number of 
3 

zero elements in any path vector belonging to [43n+h,n; Vy Yop ¥5] : 

Clearly these zero elements transform to 1's when the path is extended to 

(3n+5,n). Hence the number of paths to (3n+5,n) which have exactly n 

positive elements in their path vectors is given by 

al nh 

) (Sn+h,n3x,.%,075) = . (n3%,5%5595) = (n5x,.%,5*f) : 

ae Vegae 

A similar proof may be given for m = 4n+6. To prove (2.).1'), 

we first note that whenever x, = 0, the right hand side of the equation 

vanishes, Now every path to (3n+2,n) which has exactly n_ positive 

elements in its path vector must pass through (3n+l,n-1). Thus every 

path in [%4n+2,n = x + Xp + B33 Xp, Xoo X J] may be shortened one unit 
2 B) B) 

horizontally and then one unit vertically to yield a path in 

x 71 

io [n-1; Xp? eae y,] 

y,=0 
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= OY 

Hence, whenever Ux, =n, we have as before, 
1 

a 
% 

(3n42,n5 xX) ,%5,X5) = (n-15%,%557,) = (n-13x,,%,, (x, -1) i 

Vane 

To prove (2.4.1") we only have to note that all paths to (3n+3,n) 

having exactly n positive elements in their path vectors can be partitioned 

into paths which pass through (3n+l,n) and (3n+2,n-1). Clearly the 

number of paths passing through (3n+1,n), which when extended, yield paths 

in [3n+3,n; X12 Xp» x5] is 

(3n + 2, n; Xo Xzs x,) = (n-1; X59 Xs (x,-1)*) 

using (2.4.1'), By an argument similar to the one used in proving (2.4.1) 

it can be seen that the number of paths passing through (3n+2,n-1), which 

when extended, yield paths in [3n+3,n; X12 Xp» x5] is 

17) 

3 (3n4+2,n-13x,,%5,74) = (Sn+2,n-15%,,%,,(x,-1)*) = (n-15x,, (x,-1)*, x5) 

y{-° 

using (2.4.1). Hence the total number of paths to (3n+3,n) is given by 

(Geleie ie 

To complete the proof we note that any point (m,n) with m> 3n 

which does not fall into the previous cases may be represented as (4n+4,t), 

(3n+5,t) or (3n+6,t) where t <n. Excluding, for the moment, the rather 

obvious cases t = 0,1 , let us first consider points (3n+4,t) . Clearly 
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[Sn+4,t; Xp» Xo» X ALE eka + X. fb Xou= t must equal [Sn+4,n;x),%,, 1 x5] ) b) 

and hence from Lemma 2.3.1 

(Sn+h, t5x) »%5)X5) = (m3 x) ,%5,%5) where Pe =t<n 

Again by a repetition of the argument used in proving (2.4.1) we 

have, whenever ae =ete< 

x 
1 

(3n45,t5X),%55Xz) = (3n+5, 05x, ,X5,%-) = ) (Sn+h,t3x5,%5,¥,) 

alae 

(n3x,,x ae . XS TB AN 

The remaining case is similarly treated. 

af 

(3n+j,t), t<n, j = 4, 5, 6 follow from the obvious identities 

Thus (2.4.1) is true even if 2 = t <n and all other cases 

= 6 © @ «9 = m,t;xX x x (m, ) (m,n5 x, ,X5»X3) = (m,n-1;x x Nee as ile 2*s) 

Where 2x, =t<n. 
i ab 

In the next section we will derive the ballot theorem as a special 

case of Theorem 2.4,1, It will then be seen that we are not only able to 

give the number of paths to any point (m,n) but to all points (m,n-1) 

(i=l,...,n) and that we are also able to classify these paths according 

to congruences of the elements of path vectors. 

§ 2.5 Derivation of the ballot theorem 

Before we derive the ballot theorem, we first extend the identity 
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(2.2.7) to cases in which x, = n+l . We recall that in (2.2.2) we have 

set 

(n; KyoXoveeey%) = 0 if Ux. >t 
i 

(and thus, in particular, if Bal = n+l .) 

Hence for aa = n+l , any expression (with one asterisk) 

x, 
J 

x aa! 

(5X) y+ e 9K iy eee y MH) = y (5X) 5000s gy eee r%) 

.=O 
v4 

x,oh 
Je 

= (5 Xp yoo eeVur ees) 

¥4=0 

or 

¥ 
(2.5.1) (m5 yy 00+ Xs yee 9%) = (n3x, X55 oovy (x,-1)*, ° + 09%) 

is well defined. 

Consider next a sum 

x hig: Se 2 
i y 

(2557.2) ). » (n; aan covey Yur oes Digyre sine x.) 

sine y 5-0 

with Fe = n+l , This sum may be split as 

x, ~1 x, x 

Jj Coon 

y ) (5X) yee esVyreeesVareeeyh ) + ) (nj Xp yee er Xp sree rT gy ee ey Xe) 

=O , =O =O aaa Y, 





Now using (2.5.1) to simplify the last sum, the sum in (2.5.2) 

equals 

Weehasy)] (m3 xy 50005 (ei 1), 6.158% - +H) ae (3x) 5000s aeees(X -1)%, 06. 5%,), 

Since the finite summation in (2.5.2) also equals 

2S a = 

i) y (M3 Xp see esVgrceesVureee eX) which may be split as 

Wao Yc 

x,-1 xX, xe 
i i 

(n;3x pooesy ge0eaY syne 009 ce (nsx pooeoyY ERAS GRRL oN) Ve 1 i j * i i j k 
un re y,=0 

an expression analogous to (2.5.3), namely, 

(255.5) (m3) 52-09%, +009(x,-1)*, 46.5%) ci (3X) 502 2X Free esXioeeesX,) 

must equal (2.5.3) and we take the common value of (2.5.3) and (2.5.3') 

as nsx een x*¥ ooo x* ooo & ° ( 9 12 > i? > de 5) 1) 

In general, if (i, 4 record | is a subset of [1,2,...,k] 
2 

i i i ood k ? oo 8 ¥ oeo *¥ 9° 860 with 1<i,< i, < Shek, then (n; Xp a »X¥ »X,) 

for, 2 x 5 n+l, may be taken as any of r! equal expressions and is 
BL 

well defined, This completes the extension of our definition of the left 

hand side of (2.2.7) when & x, = n+l. 
i 

We also note that equations (2,4.1'), (2.4.1") which are 

valid for & x, = 1, may now be written as 
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a oe 

(Sn4+2,n5 x, ,X,%5) = (n-1}x,,%,,%)) 

and 

(343, 05x) »%59%5) = (n-15 x5] ,%5) . 

Hence our main theorem takes on the following simple form: 

If =x, =t<¢n, then 

(15x) 5X55 %5) if m= 3n+} 

(2.5.4) (m, t5%) ,X55X5) = < (155 5%35%)) if m= 3n+5 

(15 %5534 »*5) 1f "m= 3n#6~" . 

For points (3n+1,n), (3n+2,n) and (3n+3,n) a similar result 

holds with n replaced by (n-1), n>1. (Clearly the number of paths to 

(m0) 4227 1.) 

In the form (2.5.4), the generalization of the ballot theorem is 

straightforward for any k>e , 

We now derive the ballot theorem as a special case of (2.5.4). We 

restrict ourselves to the typical point (3n+5,t) , where t <n isa 

positive integer, as other cases are similar. 

Now paths to (3n+5,t) from the origin can be partitioned into 

(t+1) classes, according to the number of positive elements c(=0,1,2,...,t) 
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ellen 

in their path vectors, A path which has exactly c positive elements 

belongs (for appropriate X19 Xs Xz) to [3n+5,t;x »% 51%] with =x, =c., 
i 

Thus the number of paths to (3n+5,t) with exactly c positive elements 

an 

is 

+, HSC 

(15% 4% %]) from (2.5.4). Hence the total number of paths 

t 

to (3n+5,t) is ) 4 M (n;x Xo 9Xay Xy »} . The quantity in braces 

is 

The last step 

c=0 cy enna Sa 

Senn x X_ +X 
n+x, +1 n+x, pti. os ul ‘s 205 

x x x n+2 n+l 
1 2 5) 

hxX,=C 
ii 

[le 
n+r+l n+xX n+xX 5 c-r 

ee ayn VE (2) (its) ered 
X_ tk a=C =F 5 ul 9 

Gog coefficient of x° "in (1x) (@P@)) ye et 
Ie 05 | n+2 n+l 
rT=0 

c 
: mn ap (eI r- oh i eee oo 
Gj 7 ae tenet 

r=0 

3n+3+C 3n+3+C 

c = 2 c-l ‘ 

is obtained by using the well known combinatorial identity 
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4 BAN. 

k 
atk-j-1\ /b+j-1)\ — fa+b4k-1 

Ke j ) ih k 
j=o 

Thus the total number of paths to (3n+5,t) is 

aan ee fe gn+5-35t /3n+5+t 

3n+5+t ie 

using the identity I mentioned in section 2.2, 

This completes the derivation of the ballot theorem, 

§ 2.6 Some applications 

In this section we will first prove a simple theorem suggested by 

the definition of (n;x,, os seieis x,) of section 2.2, Then we will derive 

the "one A.P." case of Mohanti and Narayana discussed in [11]. 

Let n,x, (i = 1, 2, ..., k) be non-negative integers. For 

n> 1, consider the function defined as follows; 

(057050, es ..5 0) i — 

(2.6.1) (5x) 5% Bethy x) = 

2(x,-y,) = 

Le) (m-15 949 00017,)", 

otherwise , 

Then we have the 
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Theorem 2.6.1: 

With Ex. gn, 

- Bes is n+l a eae One ey Ga 
i=l i 

Proof: 

For n=0, 1 it is easily checked that (2.6.2) holds. 

Suppose then that (2,6.2) holds for n= m-l (m>2) and Ex, < ml, 
= 1 = 

we will show that (2.6.2) holds for n=m and Ix, Sm. Now, by (2.6.1) iis 

= Nea a %(x;-y,) Ne 

(m; x aay, Xoyeeey%,) = ” cee » (-1) (m-15y¥,5+++s¥,) : 

ya 2 of Mise 

Since ra S m , we have re <m unless Yq = Sony = es. and 

2a Poo SP BSL ihc This is a single term which vanishes by (2.6.1). Hence 

we can assume that Ly, < m-l , in which case we can apply (2.6.2) to obtain 

(m5 Xp 9% 900%) cai ate tata! AL abtie | ms el hi 
Vico Yare 

x Xx. 

ae “a = i m=1+y oe = (-1)% ie at ie i) ft -2)} 
fs 2 fel yy m 

ye lee 

Now, using an argument similar to the one used in proving Theorem 2.2.1 we 

obtain 
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(uo 

Ceonenee  pene ye i ae ; _ : 

This completes the proof. 

Equations (2.6.1) and (2.6.2) suggest that by proceeding similarly 

to (2.6.2) we can establish the general identity 

*% * a 
(2.6.3) Coa ae a yevey®,) = 

r 

= a r 

bat e 2 en on z 

= y aee He (-1) 7% Sty s ea) garth pevey%) 

as 
y. =O y. =o 

al *r 

Xx xr M+xX, +1 
Aes i. N+X, s 

tall) TT ( x,7 ) I a i) [a - = - | : 
i= oe jes 

The identity (2.6.3) is analogous to (2.2.7) and the notations used are the 

same as in (2.2.7). 

Next, we direct our attention to deriving some preliminary results 

to be used in the derivation of the one A.P. case, to be discussed a little 

later, Consider the set A (n,k) of vectors of non-negative integers 

Co a ae whose elements satisfy 

fe) <4, $4 Se. S Se 

(2.6.4) a, < kit Fr i i r is I — 
“ 

i) 
“ < 3 

an integer satisfying O < A 4 
lA 

* 
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« 65 = 

Now introduce the subsets A (13%) 56.69%) of A _(n,k) such 

that every vector in A (m3 x) 5 +609) has exactly Xe of its positive 

elements = i (mod k) i = 1,2,...,k respectively, Let AN (03%, 5+++%,) 

denote the number of vectors in A (13x) 50065%,). Then we have the 

Theorem 2.6.2: 

With: 2x, < ni , 
digo 

(2.6.5) {AS (AB: BOURNE = (een Ra ee ce) 

where the expression on the right hand side of (2.6.5) is defined by 

the identity (2.2.7). 

We first interpret (2.6.5). Essentially the theorem states 

that to obtain the number of vectors in A. (n3x)5...9%,), 1) S s S k, we 

only have to permute cyclically Ky reeesX, in (n3x,.-+-%,) s times 

and then place asterisks on Kipeieiea sae Note that when s = 0, the 

sets A,(n,k) and A. (defined in (2.3,1)) coincide and so do 
yk 

* ee 
Aq (n3x)5+++>%,) and (n3x, 56-45%). Similarly, when s = k we have 

(2.6.6) AL (ages sd, ) ae (tt, x5 neo) = (n+15x,5-++5%,) ° 

Proof: 

It is convenient to prove the theorem for r= 1. The 

proof will then be completed for any r, O<r<k, by essentially 

repeating the same argument, For nz=0QO, the theorem is trivially 

true, For n > 1, associate with each vector AL in A, (3X) 56+ 9%;,) 

the vector of n_ elements R(A_) obtained by subtracting 1 from 
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every positive element of Ave We assert that R is a one-one mapping 

x 
from Aj (n3x)5+++9%,) onto i [n3x,5++-5X, 591], To see this, first 

Mi 

note that under R_ the elements of AT which are = i(mod k), i = 2,...,k 

are mapped into elements = i-l(mod k), i = 2,...,k respectively and the 

elements = 1(mod k) are mapped either into elements = k(mod k) or into 

zero, Thus R_ is an into mapping, A little consideration now shows 

that R is one-one and the fact that R is onto follows by using an 

argument analogous to the one used in proving Lemma 2,3,.1, Thus the 

number of elements in the two sets is equal and equation (2.6.5) holds 

Next consider the subset A,(n5X9+++s%) of A,(n,k). The 

application of R_ to the elements of A(n3x poe 9%) subtracts l 
] 

from every positive element and the elements now satisfy 

it — 

aes ki+i a aati EINES eee 2 

A little consideration shows that there exists a one to one correspondence 

x 
e ry 

1 e between the vectors in A,(3%, 5-665) and iy Al (ms X55066 X59) : 

y4=0 

Thus 1 

% 

A, (n3x,, oe +») 

aa 
* 

AV Gig Ke silage Va) : 1 9 a? 5) k tf 

ae 

* 

= » (M3 X55 662s K ry Xp) 
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we + 

= (n3x pe ee eX 9X Xp) 

3 

It is now clear how the proof may be completed in r_ steps, 

Illustration: Consider the subset A,,(231,1,0) of A,(2,3) whose 

elements are 12, 15, 18, 24, 27, 45, 48, 57. Then 

R(A,(231,1,0)) = [01, Oh, 07, 13, 16, 34, 37, 46) 

1 

= U A (231,0,y,) 

ling 

1 1 

Ss CC (230, yy] 

and we have, 

MN (eo) 
* 

A, (2;1,1,0) 

i ec) 
¥* * 

(Bsiors il Ais) 
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Finally, we make the following remarks; 

(i) Consider the set of vectors whose elements are non-negative 

integers (a,,+++,a)) satisfying 

(2.6.7) 
as (itp), Lo = lye, sey BZ.p SO is, an integer. 

Then (n+p;x yrreer%) ; =x <n, gives the number of vectors in the subset 
i 

of (2.6.7) which is such that exactly x, positive elements of every vector 
al 

contained in it are =i (mod k) , i=1, 2, ..., k respectively. 

(ii) Next, consider the set of vectors whose elements are non- 

negative integers (a,, Any very a) satisfying 

(a) Osa, Sag sue Sa, 

(2.6.8) (b) aT = O for i = Ls a @eoy q 3 gq < n 

Ke) 08 a, < k(ieq) forj ds Gly jo.cy Bs 

Then (m-45% ,%X55+++5%,) ; ux. < n-q , gives the number of vectors in the ek = 

subset of (2.6.8) which is such that exactly Xs positive elements of every 

vector contained in it are = i (mod k) , i=1, 2, ..., k , respectively, 

We are now in a position to solve the "one A.P." case. Let 

A (a,b) denote the set of vectors (a,,a peoeya ) such that 
2 
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(2.6.9) 

io) 
A 

) A Sfart (l=l)b 5) = 1,2,....,n 3 a,b are integers > 0 . 

Then we have the 

Theorem 2.6.3: 

The number of vectors in A (a,b) is given by 

a+L+n(b+1) 
n @ A*(a,b) a 

Proof: 

Let c, d<b_ be non-negative integers such that 

(2.6.10) a=be+d. 

Then (2.6.9) may be re-written as 

O<a S.ee Sa 
at —- n 

(2.6.11) 

O<a, <d + (c+i-1)b 1 = 1,...,n 
i 

Partition A (a,b) into subsets A (a,b5x),2++5%) such that 

every vector in A (a,b3x,,+-+5%,) has exactly x, of its positive elements 

=i (mod b) , i= 1, 2, ..., b respectively, If A” (a,b5x,5+++»%,) denotes 

the number of vectors in A (a,b3x,,+++5%) then by preceding remarks and 

Theorem 2,6.2 we have 

A” (a,b5X,)+++5%,) = (mee~1 5X4 yy ee es My oXpo ee 9 XQ) 

and hence 
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xX 

A (a,b) = q AY (a, b; pXyoereaX,) 

Ry bee 6 HH Sn 

2x, x, Bs 2) Aa N4C+K, nO! cca) i ak -t 
i cs L n+c+1 n+c 

ue S n 

Lettin Ki ox, = S and Ox, + 3x, =t sa we have Ss | is a) rea ae » SAY, 

n 
a d b 

* N+C+X., n+e-l+x, SD DRL a A at Ie isl i qad+1 j 

y » pig ise \ « teas -it 
L n+e +1 n+c 

y ‘ ; ¢ n+c a 
a ye ees oe h. a

e es 

t=o r=0 

Cee sae, )b+d+t - ie) 
lt 

age: (= aN 

ue y a+l1 

~ a+l4n(b4L) n 

which proves the assertion. 

Note that our approach not only yields A’ (a,b) but also classifies 

the vectors of A” (a,b) according to congruences of their elements, 
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CHAPTER III 

A VARIETY OF COMBINATORIAL RESULTS. 

§ 3.1 Introduction and some preliminary remarks 

In the last chapter we discussed in detail an analogue of the 

multinomial theorem and its connection with a certain set ane of vectors 

of non-negative integers, A classification of the vectors in the set 

nel according to the congruence properties of their elelemnts led us 

naturally to a refinement of the ballot theorem. We take this occasion 

to remark that there is some similarity between the "main" Theorem 2.4.1 

and the theorems of Chapter I although our approach is entirely different, 

Another very interesting application of the function (3X) Xoo 0009 %,) 

is for the special case k = 2 when the set ante and the set of simple 

sampling plans of size n in the plane may be shown to be isomorphic 

partially ordered sets. We do not propose to discuss, apart from a brief 

mention in this section, any properties of simple sampling plans. A 

detailed discussion of such properties as well as enumeration problems 

concerning simple sampling plans of size n is presented in [10] , and we 

also refer to [12] where sampling plans were first introduced formally, 

A closer examination of certain properties of simple sampling 

plans suggests yet another source of recursions of the type discussed in 

Chapter II, Such a study has already been undertaken in [13] where a 

subclass of all sampling plans called 'regular' sampling plans has been 

discussed, Curiously enough the only other non-trivial function analogous 
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to the multinomial that we have been able to find has the same relation with 

regular sampling plans as the function (n; Xpreeey%) has with all simple 

sampling plans. However, in what follows we are only interested in the 

combinatorial aspects of these analogues, With this end in view, we give 

a brief account of the function {n3x,,---,%, J arising out of the regular 

sampling plans in the following section. We also study some other types 

of recursions in an attempt to find out any other non-trivial functions 

(analogous to the multinomial) forwhich an explicit expression may be given. 

The rest of this chapter is devoted to certain special topics. 

The diverse nature of these special topics prevents us from describing them 

here with any degree of precision. Thus the connection between these topics 

and our general approach will only be discussed, when appropriate, in the 

following sections. 

§ 3.2 Further analogues 

This section is devoted to the discussion of some recursive functions 

in an attempt to find some non-trivial functions analogous to the multinomial 

and having explicit expressions. The functions defined by these recursions 

can be identified with certain subsets of the set of vectors AL k and also 

have connections with the simple sampling plans which, in view of our remarks 

in section 3.1, we will not discuss here. A lattice path interpretation can 

be easily given to these subsets of vectors, 

We first consider the function (n3x),+..5%,) which is the only 

other non-trivial analogue of the multinomial theorem that we have been able 
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to find. In the course of our discussion of (myx), 00+,%, we will see 

that its applications are analogous to the applications of (nyx,,-++5%,). 

We remark that some applications of (myx) 0 00,% that we give below are 

also contained in [13] but our approach seems a little simpler and our 

results are also more comprehensive, 

Let n, X,, 8. (i = 1, 2, ..., k) be non-negative integers, 

For n> 1, consider the function defined recursively as follows: 

{0; O, O, eoey O}=l 

0 ap Ba SiS ee 3k aI 
i L 

(3.200) (Nj), Xoyee 09%) 5 

y {n-1;x,-5,,%,-5,, ile +9%,-5,) otherwise , 

S-=0) or 1 
al 

te eo ans 

Here the 'X' sign indicates that the second right-hand member of (3.2.1) 

is the sum of ok terms, The function (myx, e065 is given explicitly 
k 

i <n by Theorem 3,2,1 which is proved by an argument similar to 

the one used in proving Theorem 2.2.1. 

for X% x 
i 

Theorem 3.2.1; 

When 2 x, Sink, 

{n3x,,++.5%),) =: 50%, 

while for x x an), Ex, S af 
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is n+l ’ 1 2 
(5.2.2) Cn 39%» + pleats = l Ca aan 

Proof; 

The first statement is trivially true by definition. To prove 

(3.2.2) we proceed by induction. For n=0, 1 it is easily checked that 

(3.2.2) holds. 

Assume then that (3,2.2) holds for all positive integers n<m (m> 1). 

Then, with 2x, < m+l , we have 
1 = 

{m+1 5X, X5y+-+y%,) = y {ms x, - Sir eeey XO) } r) 

5, =0 or 1 

at = LOSE Sle Oo a)s3 

A little consideration now shows that we can assume that ‘ (x,-5,) <m_ and 

apply the induction hypothesis to obtain 

Ic m+1 tPA 
(m4173y,%pp004s%} = dh te) io 

5.,=0 or 1 
i 

i=1,2, . srevsikt 

The finite sum on the right-hand side of this equation is now 

broken into two sums each containing pte terms, the first sum corresponding 

to 5) = 0 and the second corresponding to oy ey Let, 
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crime Leoie: He (ms) A (ma) 

m ce Te gl Ban Fea ay) (xx) “1) ne 
3 x, 75 m + aa ae xy a) crn 

After some simplification we obtain 

wie = 2) 2 Gad (Sa) 2 
i Se eg ons 

The argument can now be repeated for i = 2, ..., k to complete the proof. 

In the notation of section 2.2 and proceeding similarly to (2.2.7) 

we can establish the general identity 

(5.205) (aiayererXf seeth pee) = I ae I, erik - = - “| : 

Next, proceeding similarly to Theorem 4.2.1 we can establish the 

following theorem which is completely analogous to Theorem 2.6.1, 

Theorem 3.2.2: 

Let n,x,,6, (i = 1,...,k) be non-negative integers. For n>1, 
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consider the function defined as follows: 

(0; O, O, wee, 0} = 1 

O LE pax, > ni 
“aig 

(3.2.4) (5X) 9X5p00 09%) S = 

»: (capi (m-15x)-8) 56-65%, 98) , otherwise, 

6 =0 or lL 

dial). oe ht 

Then, with ria <n, we have 

Cees) ees inaee ae eee ff Ge fe : 

We will now consider two more recursions. In the first case the 

recursion is suggested by (3.2.1) but we are not able to give an explicit 

expression. In the second case the recursion is suggested by (2.2.4) and 

we are also able to give an explicit expression but it is not essentially 

analogous to the multinomial, 

For n> 1 _, consider then the function (n3x,,---5%, J, defined 

by the following relation; 

(0; 0, O, wee, 0}, = 1 

0 if ae = Tl 

(3326) (M5 X1y%o90e ee %), a 

{m-15x)-5, X75, +++9%,-5) J, otherwise 

5, =0 or 1 or 2 

1 = SZ gverereig Kc 
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We first remark that in the second member on the right-hand side 

of (4.2.6), '=' stands for the sum of ZF terms. As remarked earlier, 

we could not find an explicit expression for (msx,,-+.5%,), but it is 

easy to show that (Nyx, ,-0-s% Jy gives the number of vectors in the 

appropriate subset (Myx, 500%], (with usual congruence properties) of 

the set of vectors of non-negative integers (a,,.-+,a, ) satisfying 

( (i) Og a, Sa See Say 

(ii) Oca, < ki sa aa ieee 

Baar) (iii) If a_(r <n) is the first positive 
( r 

element, then the equality in (i) is 

possible only for at most two elements 

at a time, 

Illustration: For k = 2, n= 3, the vectors in the set defined in (3.2.7) 

are 

000, 001,002,003, 004,005,006,011,012,013,014,015, 

016,022,023, 024,025,026,033,034,035,036,044,045, 

046,112,113, 114,115,116, 122, 123, 124, 125, 126,133, 

134,135, 136, Lub, 145, 146,223, 224, 225,226,233, 23h, 

235,236, 244,245 ,2h6, 

The following "triangles" give values of (n3x, 5%), FO Me Oeil, 2%) Dy the Die 

The entries in the first row correspond to values of X19 Xp such that 

x) + Xp = QO , those in the second correspond to values of XX such that 

X, + Xp = 1 , those in the third correspond to values of X12 Xp such that 

X, + X= 2 and so on, 
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Next we consider the function defined by the following recursion, 

(C750; Os eh, Oo we 

(6) Ack 2Dy x, >n 

i 

(3.2.8) (5X) X59 +++ %,) S 
m 

(n-15x,-j,x,-J, eee »% 45), 9 

otherwise , 

Here min(x, ,x reee eX) stands for the minimum of the integers Xp oXoreeesk- 
2 

Recalling that n,x, (i = 1,...,n) are non-negative integers and the 
i 

convention adopted throughout that (n3X)50+65%,) vanishes when any of 

the x,'S is negative, we observe first that 

(3.2.9) (13%) .Xose6eo%) = 0 if x, # Ky fea F x 

x ; then (3.2.8) can be rewritten for n> 1 ce ) ct “ | tal iH iH i] 

as follows: 

1) Le ken 

(3.2.10) (n3x,...5x) = a 

by (n-1ls3x-j,...,X-j). otherwise . 
US ; m 

j=o 

We remark that, for kx<n(k>1) if n= 0 (mod k) then the maximum 

value that x can assume is (2) =a) But if n =v (mod k), 

v = 1,2,...,k-1 then the maximum value that x can take is tare 

In either case equation (3.2.11) gives an explicit expression 
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for (n;x, ..., x). as can be easily verified, namely, 

1 
(SE) (n3x,x,...,%) be Ce) [lye = (kx < n) , 

It is debatable if (myx) 00%) can strictly be termed as an 
L 

analogue of the multinomial theorem. Moreover, a closer look at the expression 

for (n3x,...,x) shows that the two functions (m3 x,,+++5%,) and 

(ny x,%, 6.25%) are somewhat related, However, we shall not enter into 

these combinatorial details which seem of little interest. 

We finally remark that if we replace min(x, ,X55+++,%,) by the 

max (x, X55 +++5%,) on the right-hand side of (3.2.8) we end up again with 

(3.2.10). This is obvious in view of our remarks following (3.2.8). 

No other relation of the type discussed above seems to give explicit 

expression, It would be interesting to know if there exist some other non- 

trivial functions of the type we have discussed, i.e. which can be defined 

in terms of a recurrence relation and have explicit expressions, 

§ 3.3 Some applications 

In this section we will first show the connection between 

{n3x,,+--,%,J and a certain set of vectors and then give some applications 

of (mj xy 0+ 09%} . The results obtained here are analogous to those obtained 

in section 2.6. 

Consider then the set Bo lk of vectors of non-negative integers 
3 

(b,,b,,.++,b,) whose elements satisfy 
ye k 
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(2) ) 
A 

oy <b 
uA HA 

o 

(it) ll Ey) Hepes) tl (o) 
iA 

lon < ki 1 

(ids) hes been <n)! is the first! postitive 

element then the equality in (i) is 

« impossible, 

We remark that B is a subset of A of section 2.3, as is 
n,k n,k 

to be expected. 

Let us now introduce the subset S{n;x,,...,x,} of B such 
1 k n,k 

that every vector in S{n3x, 52-05%} has exactly Xe of its positive 

— elements = i (mod k) , i = 1, 2, ..., k respectively, Then the following 

theorem establishes the connection between the number of elements in 

S{njx,,+++5%,J and (5X) 5+++y%,) of equation (3.2.2). 

Theorem 35.3.1: 

The number of vectors in S{njx,,+--,%,) is given by (nj x)5+++,%) 

of equation (3.2.2). 

Outline of Proof: 

The proof consists in establishing a one-one correspondence between 

the elements of S{n3x,,+++5%,) and T = 

It is easily shown that the mapping P defined in the proof of Lemma 2,3.1 
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is one-one from S{nzx1,+++5%,) onto T . This completes the proof, 

Denote by Be the number of elements in BW Then proceeding 
, k aioe 

analogously to section 2.5 we have 

(3.3.2) ie y (1 - &) (haa 

Finally, we state the following corollaries of Theorem 3.3.1. 

The proofs are straightforward in view of our discussion in section 2.6 and 

will be omitted, 

Corollary 1: 

Consider the set of vectors of non-negative integers (b, ,b,,---,b_) 

such that 

(i) Ons D8 SoBe sb 

Ga) Der fee. t dat off ets ny j is an integer, t 

C5) ee 
(iat) e UTE be (xr <n) is the first positive 

element then equality in (i) is impossible. 

Letting S. {m3 x, ,+++5%,) denote the appropriate subset of (3.3.3) 

x 
with the usual congruence properties, and S. (nx Koper eX) the number of 1’? 

elements in S(m5X)5++0s%,) we have 

* % * 
(3.3.4) S (N53 % 1% os 09% J = (n3x, > ie esa 9X) 

ts k 2x mx 
‘o I n+2 I n+l iets EG iy STS Se 

cee ee) sed \ ne mal 
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Corollary 2: 

Let B (a,b) denote the set of vectors of non-negative integers 

(b),.+-,b,) satisfying 

(i) O<b 1A = N\ \ o 

(ii) .o) <b 1A 
(3.3.5) 

(ie) ea ie be (x <n) is the first positive element 

then equality in (i) is impossible. 

Then the number of elements in B (a,b) is given by 

n 

) Gy fe a bs 

s i bn+a 

S=0 

ce (5.5.6) B (a,b) 

Corollary 3: 

In (3.3.1) if we let r=1, then we have b, as the first 

positive element and accordingly the conditions (3.3.1) reduce to 

O< by < by S500 S Bb. 

(3.3.7) 

O<b, < ki ea ice a a 

Let B(n) be the set of vectors with positive integral elements (db, Posse ey 

satisfying (3.3.7). Let B(n5X),+++y%,) with 2x, =n , denote the subset 
qi 

of B(n) such that every vector in B{n3x,,+-+5%,) has exactly Xe of 

its elements 2 i (mod k) , i = 1, 2, ..., k respectively. Then a little 

consideration shows that the number of elements in B{n5X,,+++5%) is 

a+(i-l)b i=1,2,...,nsa,b are integers es > 

——_ 

) 

@) 



arogotak 



Stoll, 

given by 

+ I ey y ux. =m y 

@) | otherwise, 

(3.3.8) B¥(m5xpps00r%) = 

and the number of elements in B(n) is given by 

(3.3.9) BX(n) = ot (ett) . e n+l n ° 

We shall see that these results will help us solve a complicated 

difference equation in the next section. 

Corollary }: 

Consider the set of vectors of non-negative integers whose elements 

(b),--+5b,) satisfy 

(i) C2) =hoi-.- =< 
l 2 

(35-10) 

id) bs ki fife) ee uke ih 

Tf By {n3x1,-+ 9%) denotes the usual subset of the set of vectors 

defined by (3.3.10) then the number of elements in By {n3x),---9%, J is 

given by 

kk 

ell ne {ff Sx. syne] 
n+2 es Xe i 

k 

(Au oekL) By (m5 X,9+++9%, J= a a eed alt Ux, =n 

0) otherwise ., 
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§ 3.4 A difference equation 

In this section we consider a partial difference equation of a 

somewhat complicated nature and solve it explicitly. We will only consider 

the case k=2 which is of special interest and this is also the case in 

which we have been able to give an explicit solution. In the general 

case an explicit solution seems difficult to obtain, 

Let n,e,x, (4=1,2) with X,+% =n be non-negative integers. 

For n> 1 consider the difference equation defined as follows: 

BO,°0,; 0) .> 1, 

B'(n, e; x,) = 0 if e< nn, ¢ >2n 

e-l1 
Nem x 

i Bi(met;igaj-!) if ‘e 4s odd 

j=l 

(Go) B’(n, e; x,) = 

e-1 

* : 
. B (n-1, 55%, if e is even , 

j=l 

We will soon see that this difference equation arises as a result of the 

relationships between certain subsets of B(n) (with k = 2) defined in 

Corollary 3 section 3.3. For the moment, consider the subset B(n,e) of 

B(n) such that the last element of every vector in B(n,e) equals e . 

Denoting by S* the number of elements in S » we have, for n a Ls 

B’ (n,n) = 1. This follows because bisa and the only vector with bi=n 

is (257m), let) iB (O,0 = | 
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Illustration: B(3) consists of the following vectors 

Las lated. Leo, low k55, bso, t45) PAG, 

25h ,235, 236,245,246. 

BY(3) = 14 and B(3,4) = [124,134,234] , B(3,6) = [126,136,146,236,246], etc. 

Then we have the 

Theorem 3.4.1; 

0) if e<n and e>2n 

(3.4.2) Suore 
* 

B (n-1, 4) if ine < en i. 

1 j 

Indication of Proof: 

B’(n,e) = 0 for e<n and e>2n by definition. For 

n<e<2n, associate with every vector B in B(n,e) a vector of (n-1) 

elements, s(B) obtained by suppressing the last element of B_. Then a 

little consideration shows that S defines a one-one mapping from B(n,e) 
e-1 

Onto) | \W) B(n=t,3)) 

j=l 

It is now easily verified that B*(n,e) is explicitly given by 

* entl-e ;e 
(3.4.3) Bec) hr 

Let us now partition the set B(n,e) into subsets B(n,e;x, 

such that every vector in B(n,e5x, ) has exactly x, elements = 1 (mod 2). 
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We wish to emphasize that the set B(n,e;x,) should not be confused with 

the set B(n5 x, 5X5) of Corollary 3 section 3.3. Recall that B(n;X, Xp) 

is the subset of B(n) such that every vector in B{n; x, Xp} has exactly 

x, of its elements = i (mod k) i = 1,2, respectively. We further note 

that B(n,e;x,) is a subset of B{n;x,,x,). (This is not true in general.) 

Then it is easy to see that 

en 

* i aie: en Ak 2 n+l 
(3.4.4) ) B (n,e;x, ) = oe Ga ‘ 

éeé=n 

Illustration; In the following tables the row sums give B¥(n; x, ,n-x, } 

and the column sums give B*(n,e). The entry in the Ne row (x,=0,1,...,n) 

x 
aadithe e° olan (e=n,n+1,...,2n) gives B (n,e;x, ) : 

n=2 BY (25x, ,2-x, } 

=3 BX (33 X, 53-x, J 
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B' (5x, ,h-x, ] 

n=5 B¥(55X,5-%, ] 
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Cee 
on 5 
2 6 4 30 

n=6 3 1 3, lien 26 LO 

in | 3 3 20 14 

D | y 1 

ern 

1 6 20 8 90 

B*(6,e) 

Val 12 

1 

1 5 

15 50 

50 50 BX (6; x, ,6-x, } 

50 15 

15 1 

1 

152 152 429 

A little consideration now shows that BX(n,e5x,) » the number of 

elements in B(n,e3x, ) satisfies the difference equation (3.4.1). Further- 

more, we have 

(3.4.5) B¥(n,2n; x, ) = B¥{n-1;x,, 

and 

(3.4.6) BX(n,2n-1;x, )= B¥{n-1;x -1,n-x, } 

Equations (3.4.1), (3.4.5) and (3.4.6) determine B*(n,e;x 

n-x,-1} 
(sk) aS ae era 

r n 

1) for 

all values of e(n<e< 2n) . Indeed, if e is odd and equals 2n-(2v+1), 

say, with =0y1,..+, [74] » we can show by induction that 
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and if e is even and equals en-ev , say, with v=0, l, ..., i) then 

a 
(3.4.8) B¥(n, 2n-2v; x, ) = k 

(3.4.7)  B¥(n,2n-2v-1;x 1) 

Equations (3.4.7) and (3.4.8) give an explicit solution of the 

difference equation (3.4.1). We remark that a difference equation may be 

set up for the general case k>e2 ina similar fashion. 

§ 3.5 Miscellany 

It is only fitting that we wind up our discussion with ballot 

theorems, We recall that in Chapter I, and again in Chapter II, we gave 

an explicit expression for the number of Lattice paths to any point below 

the line x = ky when k>O is an integer. Our object is to obtain an 

explicit expression for the number of paths to any point when k = - ; 

u > 1 is an integer. It may however be noted that although Takdcs' solution 

of the ballot theorem covers this case, his method does not easily yield an 

explicit expression. Similarly, by measuring the distance a. of the path 

parallel to the y-axis and using our approach in Chapter II we can not only 

obtain an expression for the number of paths to (n,ny-1) lying below the 

line y = yx but also classify the paths according to the congruence 

properties of the elements of their path vectors, It is however not clear 

as to how to use this approach to give the number of paths to any point in 

the plane (lying below y = ux). 
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The method that we use here has been suggested by J, Sarangi. 

We will only consider the case w= 2. The argument for any p> 3 is 

similar. Consider first the special case of points (n,2n). For (/i.<on , 

en-1 

[ n 

below the line y = 2x is the same as the number of paths from (0,0) to 

i] = 2i-1 and hence the number of paths from (0,0) to (n,2n) 

(n,2n-1) below the line joining (0,0) to (n,2n-1) . Since (n,2n-1) = 1, 

it follows from a theorem proved in [4] that the required number of paths 

is given by 

(3.521) Galena. at: ee . 

Let us next consider paths to points (n,2m) with m<n. There 

are Gen) paths to this point in all, Our method consists of counting 

all paths that intersect the line y = 2x . A path from (0,0) to (n,2m) 

can intersect the line y = 2x for the first time at a point whose ordinate 

is i \whereysih=pls2.. st ayecmiewkicithintersectsh)yrsv2x fore ther first«time 

at a lattice point (i,2i) then there are a7 (fag) such paths upto 

(i,2i) and aes) paths from (1,21) to (n,@m). Thus the total 

number of paths intersecting the line y = 2x for the first time at a lattice 

point is 

m 

nef stek\ fareme5i 
Ji-1 i em-24 

a 

Also the paths intersecting the line y = 2x for the first time 

at a point with ordinate (2i+1) must travel above the line y = 2x upto 

the point (1,2i+1) and then to (14+1,21+1) and from (i+1,2i+1) to 
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(n,2m) , The number of paths to (i,2i41) which lie entirely above the 

line y = 2x is the same as the number of paths to (2i+1,1) which Lie 

entirely below the line x = 2y . The total number of such paths is 

Si+l1 

that intersect the line y = 2x for the first time at points with ordinate 

and hence the total number of paths from (0,0) to (n,2m) 

Me 

3i+l n+Om-3i-2 (2i+1) is > 3 sial @ ( ee ; . 

Thus the total number of paths from (0,0) to (n,2m) that lie 

entirely below the line y = 2x is given by 

m 

(3.5.2)  (n,2m)* eae ), ser Bi-1\ /n42m-3i\ 
77 

P > 3 sor ee ate 

A rather similar argument shows that the total number of paths from 

(0,0) to (n,2m+1) that lie entirely below the line y = 2x is given by 

mm 

(e515) (n,2m+1)* = Cae is ) aes a gels ie 

i=l 

mel 

1 3i+1 n+em-5i-1 

u 3i+l 6 i n-i-1 : 
i=o 

The generalisation to any uw > 3 is now straightforward. Indeed, 

we have 

(3.5.44) (n,n)* = sa a . 
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and if O<m<n-l and O< j <un-l then 

(3.5.5) (n,m)* = car : > mena Cane Ngee -i(p+l y 

m-l w-l 

1 (u+l)itv /ntmp-(p+1)i-v-1 
a (u+1)i+v z : n-i-l 

f=0 val 

and 

tai 

m-1l p-l 

oa as n+mu+j-(u+l)i-v-1 
x 2% ) Wiis Tas i+v ) n-i-l 

f=o vel 

Finally, we wish to establish the identity 

(3.5.7) a a ce oe ey 

i 

using the ballot theorem. The right-hand side of (4.5.7) gives the total 

number of lattice paths from (0,0) to (n+l,n). To complete the proof we 

observe that any path from (0,0) to (n+1,n) must either touch or cross 

the line x = y for the last time at some lattice point (including (0,0)) 

and from there on the path must lie entirely below the line x=y . Thus 

if L, denotes the number of paths from (0,0) to (n+1,n) which touch 
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or cross the line x = y for the last time at the point (n-i,n-i), 

T= 0, Ly ..c, nm then clearly 

en-2i ul et 
(5.5.8) Dery ne) a ge ©) 

and ‘ L, gives the total number of paths to (n+l,n). This proves our 

i=o 

assertion. 

We remark that the identity (3.5.7) was recently posed as an 

advanced problem in the American Mathematical Monthly [14]. The argument 

used here is essentially due to Feller who in [5] has made very elegant 

applications of this and similar ideas to solve much more difficult problems. 
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